Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Glycobiology ; 34(1)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-37944064

ABSTRACT

During the COVID-19 outbreak, numerous tools including protein-based vaccines have been developed. The methylotrophic yeast Pichia pastoris (synonymous to Komagataella phaffii) is an eukaryotic cost-effective and scalable system for recombinant protein production, with the advantages of an efficient secretion system and the protein folding assistance of the secretory pathway of eukaryotic cells. In a previous work, we compared the expression of SARS-CoV-2 Spike Receptor Binding Domain in P. pastoris with that in human cells. Although the size and glycosylation pattern was different between them, their protein structural and conformational features were indistinguishable. Nevertheless, since high mannose glycan extensions in proteins expressed by yeast may be the cause of a nonspecific immune recognition, we deglycosylated RBD in native conditions. This resulted in a highly pure, homogenous, properly folded and monomeric stable protein. This was confirmed by circular dichroism and tryptophan fluorescence spectra and by SEC-HPLC, which were similar to those of RBD proteins produced in yeast or human cells. Deglycosylated RBD was obtained at high yields in a single step, and it was efficient in distinguishing between SARS-CoV-2-negative and positive sera from patients. Moreover, when the deglycosylated variant was used as an immunogen, it elicited a humoral immune response ten times greater than the glycosylated form, producing antibodies with enhanced neutralizing power and eliciting a more robust cellular response. The proposed approach may be used to produce at a low cost, many antigens that require glycosylation to fold and express, but do not require glycans for recognition purposes.


Subject(s)
COVID-19 , Saccharomycetales , Vaccines , Humans , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Testing , Pichia/genetics , Pichia/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Recombinant Proteins/chemistry , Vaccines/metabolism , Antibodies, Neutralizing/metabolism , Antibodies, Viral
3.
Heliyon ; 7(1): e05979, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33537471

ABSTRACT

Poly(3-hydroxybutyrate) (PHB) belongs to the family of polyhydroxyalkanoates, biopolymers used for agricultural, industrial, or even medical applications. However, scaling up the production is still an issue due to the myriad of parameters involved in the fermentation processes. The present work seeks, firstly, to scale up poly(3-hydroxybutyrate) (PHB) production by wild type C. necator ATCC 17697 from shaken flasks to a stirred-tank bioreactor with the optimized media and fructose as carbon source. The second purpose is to improve the production of PHB by applying both the batch and fed-batch fermentation strategies in comparison with previous works of wild type C. necator with fructose. Furthermore, thinking of biomedical applications, physicochemical, and cytotoxicity analyses of the produced biopolymer, are presented. Fed-batch fermentation with an exponential feeding strategy enabled us to achieve the highest values of PHB concentration and productivity, 25.7 g/l and 0.43 g/(l h), respectively. The PHB productivity was 3.3 and 7.2 times higher than the one in batch strategy and shaken flask cultures, respectively. DSC, FTIR, 1H, and 13C NMR analysis led to determine that the biopolymer produced by C. necator ATCC 17697 has a molecular structure and characteristics in agreement with the commercial PHB. Additionally, the biopolymer does not induce cytotoxic effects on the NIH/3T3 cell culture. Due to the improved fermentation strategies, PHB concentration resulted in 40 % higher of the already reported one for wild type C. necator using other fed-batch modes and fructose as a carbon source. Thus the produced PHB could be attractive for biomedical applications, which generate a rising interest in polyhydroxyalkanoates during recent years.

4.
Arch Virol ; 164(9): 2297-2307, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31267215

ABSTRACT

The influence of the high genetic variability of hepatitis B virus (HBV) on the sensitivity of serological assays has received little attention so far. A major source of variability is related to viral genotypes and subgenotypes. Their possible influence on diagnosis and prophylaxis is poorly known and has mostly been evaluated for genotypes A, B, C and D. Robust data showing the detection efficiency of HBsAg from genotype F is lacking. This study examined the effect of virus-like particles containing HBsAg from genotypes A and F (particularly, F1b and F4) produced in Pichia pastoris in relation to the anti-HBs antibodies used in the immunoassays for in vitro diagnosis and compared it with that exerted by the G145R S-escape mutant. The results showed that HBsAg detection rates for subgenotypes F1b and F4 differed significantly from those obtained for genotype A and that subgenotype F1b had a major impact on the sensitivity of the immunoassays tested. Prediction of the tertiary structure of subgenotypes F1b and F4 revealed changes inside and outside the major hydrophilic region (aa 101-160) of the HBsAg compared to genotype A and the G145R variant. A phosphorylation site (target for protein kinase C) produced by the G145R substitution might prevent recognition by anti-HBs antibodies. In conclusion, the use of different genotypes or variants for diagnosis could improve the rate of detection of HBV infection. The incorporation of a genotype-F-derived HBsAg vaccine in areas where this genotype is endemic should be evaluated, since this might also affect vaccination efficacy.


Subject(s)
Hepatitis B Surface Antigens/genetics , Hepatitis B virus/isolation & purification , Hepatitis B/virology , Amino Acid Sequence , Hepatitis B/diagnosis , Hepatitis B Surface Antigens/chemistry , Hepatitis B Surface Antigens/metabolism , Hepatitis B virus/chemistry , Hepatitis B virus/classification , Hepatitis B virus/genetics , Humans , Molecular Sequence Data , Mutation , Phylogeny , Protein Conformation , Sequence Alignment
5.
J Ind Microbiol Biotechnol ; 44(2): 197-211, 2017 02.
Article in English | MEDLINE | ID: mdl-27878454

ABSTRACT

The application of pectinases in industrial olive-oil processes is restricted by its production cost. Consequently, new fungal strains able to produce higher pectinase titers are required. The aim of this work was to study the capability of Aspergillus giganteus NRRL10 to produce pectinolytic enzymes by SSF and evaluate the application of these in olive-oil extraction. A. giganteus was selected among 12 strains on the basis of high pectinolytic activity and stability. A mixture composed by wheat bran, orange, and lemon peels was selected as the best substrate for enzyme production. Statistical analyses of the experimental design indicated that pH, temperature, and CaCl2 are the main factors that affect the production. Subsequently, different aeration flows were tested in a tray reactor; the highest activity was achieved at 20 L min-1 per kilogram of dry substrate (kgds). Finally, the pectinolytic enzymes from A. giganteus improved the oil yield and rheological characteristics without affecting oil chemical properties.


Subject(s)
Aspergillus/enzymology , Fermentation , Food Handling , Olive Oil , Polygalacturonase/biosynthesis , Aspergillus/classification , Bioreactors , Chemical Phenomena , Culture Media/chemistry , Hydrogen-Ion Concentration , Industrial Microbiology , Temperature
6.
Carbohydr Res ; 339(2): 335-47, 2004 Jan 22.
Article in English | MEDLINE | ID: mdl-14698892

ABSTRACT

The sulfated agaran isolated by water extraction from the red seaweed, Acanthophora spicifera (Rhodomelaceae, Ceramiales), is made up of A-units highly substituted with sulfate groups on C-2 (28-30%), sulfates on C-2 and 4,6-O-(1'-carboxyethylidene) groups (9-15%), and only the C-2 sulfate groups (5-8%) with small amounts of C-6 sulfate, 6-O-methyl, and nonsubstituted residues. B-units are formed mainly by 3,6-anhydro-alpha-L-galactose (15-16%) and its precursor, alpha-L-galactose 6-sulfate (10-17%), together with lesser amounts of 3,6-anhydro-alpha-L-galactose 2-sulfate, alpha-L-galactose 2,6-disulfate, alpha-L-galactose 2,3,6-tri-sulfate, alpha-L-galactose 2,6-disulfate 3-xylose, 2-O-methyl-alpha-L-galactose, and unsubstituted alpha-L-galactose. Small, but significant quantities of beta-D-xylose were found in all the fractions, together with small amounts to traces of D-glucose. Some of the fractions have high antiviral activity. Attempts to correlate structure and antiviral activity in agarans are presented.


Subject(s)
Agar/chemistry , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Rhodophyta/chemistry , Sulfates/chemistry , Sulfates/pharmacology , Animals , Anticoagulants/chemistry , Anticoagulants/pharmacology , Carbohydrate Conformation , Carbohydrate Sequence , Cell Survival/drug effects , Chlorocebus aethiops , Chromatography, Ion Exchange , Inhibitory Concentration 50 , Molecular Sequence Data , Molecular Structure , Spectrometry, Mass, Electrospray Ionization , Structure-Activity Relationship , Vero Cells , Viral Plaque Assay
SELECTION OF CITATIONS
SEARCH DETAIL
...