Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Expr Purif ; 123: 112-21, 2016 07.
Article in English | MEDLINE | ID: mdl-27033608

ABSTRACT

An intense screening of Pichia pastoris clones transformed with the gene of bovine chymosin under methanol-inducible AOX1 promoter was performed, obtaining a transformant clone with a higher milk-clotting activity value in comparison with our previous studies. The scaling of recombinant-chymosin production was carried out by a fed-batch strategy in a stirred-tank bioreactor using biodiesel-byproduct crude glycerol as the carbon source and pure methanol for the induction of chymosin expression, achieving a biomass concentration of 158 g DCW/L and a maximum coagulant activity of 192 IMCU/ml after 120 h of methanol induction. Recombinant bovine chymosin was purified from bioreactor-fermentation culture by a procedure including anion-exchange chromatography which allowed obtaining heterologous chymosin with high level of purity and activity; suggesting that this downstream step could be scaled up in a successful manner for chymosin purification. Thermoestability assay permitted to establish that unformulated recombinant chymosin could be stored at 5 °C without decrease of enzyme activity throughout at least 120 days. Finally, reiterative methanol-inductions of recombinant chymosin expression in bioreactor demonstrated that the reutilization of cell biomass overcame the low enzyme productivity usually reached by P. pastoris system.


Subject(s)
Bioreactors , Chymosin/genetics , Pichia/genetics , Animals , Biofuels/analysis , Biofuels/microbiology , Cattle , Chromatography, Ion Exchange , Chymosin/chemistry , Chymosin/isolation & purification , Chymosin/metabolism , Enzyme Stability , Fermentation , Glycerol/metabolism , Industrial Microbiology/instrumentation , Pichia/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
2.
Enzyme Res ; 2016: 3016149, 2016.
Article in English | MEDLINE | ID: mdl-26989505

ABSTRACT

A comparative study of the proteolytic enzymes production using twelve Aspergillus strains previously unused for this purpose was performed by solid state fermentation. A semiquantitative and quantitative evaluation of proteolytic activity were carried out using crude enzymatic extracts obtained from the fermentation cultures, finding seven strains with high and intermediate level of protease activity. Biochemical, thermodynamics, and kinetics features such as optimum pH and temperature values, thermal stability, activation energy (E a), quotient energy (Q 10), K m , and V max were studied in four enzymatic extracts from the selected strains that showed the highest productivity. Additionally, these strains were evaluated by zymogram analysis obtaining protease profiles with a wide range of molecular weight for each sample. From these four strains with the highest productivity, the proteolytic extract of A. sojae ATCC 20235 was shown to be an appropriate biocatalyst for hydrolysis of casein and gelatin substrates, increasing its antioxidant activities in 35% and 125%, respectively.

3.
Protein Expr Purif ; 104: 85-91, 2014 12.
Article in English | MEDLINE | ID: mdl-25278015

ABSTRACT

A clone of the methylotrophic yeast Pichia pastoris strain GS115 transformed with the bovine prochymosin B gene was used to optimize the production and downstream of recombinant bovine chymosin expressed under the methanol-inducible AOXI promoter. Cell growth and recombinant chymosin production were analyzed in flask cultures containing basal salts medium with biodiesel-byproduct glycerol as the carbon source, obtaining values of biomass level and milk-clotting activity similar to those achieved with analytical glycerol. The effect of biomass level at the beginning of methanol-induction phase on cell growth and chymosin expression was evaluated, determining that a high concentration of cells at the start of such period generated an increase in the production of chymosin. The impact of the specific growth rate on chymosin expression was studied throughout the induction stage by methanol exponential feeding fermentations in a lab-scale stirred bioreactor, achieving the highest production of heterologous chymosin with a constant specific growth rate of 0.01h(-1). By gel filtration chromatography performed at a semi-preparative scale, recombinant chymosin was purified from exponential fed-batch fermentation cultures, obtaining a specific milk-clotting activity of 6400IMCU/mg of chymosin and a purity level of 95%. The effect of temperature and pH on milk-clotting activity was analyzed, establishing that the optimal temperature and pH values for the purified recombinant chymosin are 37°C and 5.5, respectively. This study reported the features of a sustainable bioprocess for the production of recombinant bovine chymosin in P. pastoris by fermentation in stirred-tank bioreactors using biodiesel-derived glycerol as a low-cost carbon source.


Subject(s)
Chymosin/isolation & purification , Methanol/chemistry , Pichia/genetics , Promoter Regions, Genetic , Animals , Batch Cell Culture Techniques , Biofuels , Biomass , Bioreactors , Cattle , Chymosin/biosynthesis , Fermentation , Gene Expression , Glycerol/chemistry , Hydrogen-Ion Concentration , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Temperature
4.
Protein Expr Purif ; 92(2): 235-44, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24141135

ABSTRACT

The codon sequence optimized bovine prochymosin B gene was cloned under the control of the alcohol oxidase 1 promoter (AOX1) in the vector pPIC9K and integrated into the genome of the methylotrophic yeast Pichia (Komagataella) pastoris (P. pastoris) strain GS115. A transformant clone that showed resistance to over 4 mg G418/ml and displayed the highest milk-clotting activity was selected. Cell growth and recombinant bovine chymosin production were optimized in flask cultures during methanol induction phase achieving the highest coagulant activity with low pH values, a temperature of 25°C and with the addition of sorbitol and ascorbic acid at the beginning of this period. The scaling up of the fermentation process to lab-scale stirred bioreactor using optimized conditions, allowed to reach 240 g DCW/L of biomass level and 96 IMCU/ml of milk-clotting activity. The enzyme activity corresponded to 53 mg/L of recombinant bovine chymosin production after 120 h of methanol induction. Western blot analysis of the culture supernatant showed that recombinant chymosin did not suffer degradation during the protein production phase. By a procedure that included high performance gel filtration chromatography and 3 kDa fast ultrafiltration, the recombinant bovine chymosin was purified and concentrated from fermentation cultures, generating a specific activity of 800 IMCU/Total Abs(280 nm) and a total activity recovery of 56%. This study indicated that P. pastoris is a suitable expression system for bioreactor based fed-batch fermentation process for the efficient production of recombinant bovine chymosin under methanol-inducible AOX1 promoter.


Subject(s)
Aldehyde Oxidase/genetics , Chymosin/metabolism , Pichia/metabolism , Promoter Regions, Genetic/genetics , Recombinant Proteins/metabolism , Animals , Ascorbic Acid/metabolism , Bioreactors , Cattle , Chymosin/analysis , Chymosin/chemistry , Chymosin/genetics , Culture Media , Fermentation , Hydrogen-Ion Concentration , Pichia/genetics , Recombinant Proteins/analysis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Sorbitol/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...