Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Eur J Pain ; 27(9): 1126-1138, 2023 10.
Article in English | MEDLINE | ID: mdl-37421221

ABSTRACT

BACKGROUND AND OBJECTIVE: Migraine oscillates between different states in association with internal homeostatic functions and biological rhythms that become more easily dysregulated in genetically susceptible individuals. Clinical and pre-clinical data on migraine pathophysiology support a primary role of the central nervous system (CNS) through 'dysexcitability' of certain brain networks, and a critical contribution of the peripheral sensory and autonomic signalling from the intracranial meningeal innervation. This review focuses on the most relevant back and forward translational studies devoted to the assessment of CNS dysfunctions involved in primary headaches and discusses the role they play in rendering the brain susceptible to headache states. METHODS AND RESULTS: We collected a body of scientific literature from human and animal investigations that provide a compelling perspective on the anatomical and functional underpinnings of the CNS in migraine and trigeminal autonomic cephalalgias. We focus on medullary, hypothalamic and corticofugal modulation mechanisms that represent strategic neural substrates for elucidating the links between trigeminovascular maladaptive states, migraine triggering and the temporal phenotype of the disease. CONCLUSION: It is argued that a better understanding of homeostatic dysfunctional states appears fundamental and may benefit the development of personalized therapeutic approaches for improving clinical outcomes in primary headache disorders. SIGNIFICANCE: This review focuses on the most relevant back and forward translational studies showing the crucial role of top-down brain modulation in triggering and maintaining primary headache states and how these central dysfunctions may interact with personalized pain management strategies.


Subject(s)
Migraine Disorders , Trigeminal Autonomic Cephalalgias , Animals , Humans , Headache , Migraine Disorders/therapy , Pain , Brain , Trigeminal Autonomic Cephalalgias/therapy
2.
Front Pain Res (Lausanne) ; 3: 940923, 2022.
Article in English | MEDLINE | ID: mdl-35910262

ABSTRACT

The cerebellum is associated with the biology of migraine in a variety of ways. Clinically, symptoms such as fatigue, motor weakness, vertigo, dizziness, difficulty concentrating and finding words, nausea, and visual disturbances are common in different types of migraine. The neural basis of these symptoms is complex, not completely known, and likely involve activation of both specific and shared circuits throughout the brain. Posterior circulation stroke, or neurosurgical removal of posterior fossa tumors, as well as anatomical tract tracing in animals, provided the first insights to theorize about cerebellar functions. Nowadays, with the addition of functional imaging, much progress has been done on cerebellar structure and function in health and disease, and, as a consequence, the theories refined. Accordingly, the cerebellum may be useful but not necessary for the execution of motor, sensory or cognitive tasks, but, rather, would participate as an efficiency facilitator of neurologic functions by improving speed and skill in performance of tasks produced by the cerebral area to which it is reciprocally connected. At the subcortical level, critical regions in these processes are the basal ganglia and thalamic nuclei. Altogether, a modulatory role of the cerebellum over multiple brain regions appears compelling, mainly by considering the complexity of its reciprocal connections to common neural networks involved in motor, vestibular, cognitive, affective, sensory, and autonomic processing-all functions affected at different phases and degrees across the migraine spectrum. Despite the many associations between cerebellum and migraine, it is not known whether this structure contributes to migraine initiation, symptoms generation or headache. Specific cerebellar dysfunction via genetically driven excitatory/inhibitory imbalances, oligemia and/or increased risk to white matter lesions has been proposed as a critical contributor to migraine pathogenesis. Therefore, given that neural projections and functions of many brainstem, midbrain and forebrain areas are shared between the cerebellum and migraine trigeminovascular pathways, this review will provide a synopsis on cerebellar structure and function, its role in trigeminal pain, and an updated overview of relevant clinical and preclinical literature on the potential role of cerebellar networks in migraine pathophysiology.

3.
Cephalalgia ; 40(3): 229-240, 2020 03.
Article in English | MEDLINE | ID: mdl-31856583

ABSTRACT

BACKGROUND: The presence of calcitonin gene-related peptide and its receptors in multiple brain areas and peripheral tissues previously implicated in migraine initiation and its many associated symptoms raises the possibility that humanized monoclonal anti-calcitonin gene-related peptide antibodies (CGRP-mAbs) can prevent migraine by modulating neuronal behavior inside and outside the brain. Critical to our ability to conduct a fair discussion over the mechanisms of action of CGRP-mAbs in migraine prevention is data generation that determines which of the many possible peripheral and central sites are accessible to these antibodies - a question raised frequently due to their large size. MATERIAL AND METHODS: Rats with uncompromised and compromised blood-brain barrier (BBB) were injected with Alexa Fluor 594-conjugated fremanezumab (Frema594), sacrificed 4 h or 7 d later, and relevant tissues were examined for the presence of Frema594. RESULTS: In rats with uncompromised BBB, Frema594 was similarly observed at 4 h and 7 d in the dura, dural blood vessels, trigeminal ganglion, C2 dorsal root ganglion, the parasympathetic sphenopalatine ganglion and the sympathetic superior cervical ganglion but not in the spinal trigeminal nucleus, thalamus, hypothalamus or cortex. In rats with compromised BBB, Frema594 was detected in the cortex (100 µm surrounding the compromised BBB site) 4 h but not 7 d after injections. DISCUSSION: Our inability to detect fluorescent (CGRP-mAbs) in the brain supports the conclusion that CGRP-mAbs prevent the headache phase of migraine by acting mostly, if not exclusively, outside the brain as the amount of CGRP-mAbs that enters the brain (if any) is too small to be physiologically meaningful.


Subject(s)
Antibodies, Monoclonal/metabolism , Blood-Brain Barrier/metabolism , Brain/metabolism , Dura Mater/metabolism , Fluorescent Dyes/metabolism , Ganglia, Autonomic/metabolism , Ganglia, Sensory/metabolism , Animals , Antibodies, Monoclonal/analysis , Antibodies, Monoclonal/pharmacology , Blood-Brain Barrier/chemistry , Blood-Brain Barrier/drug effects , Brain/drug effects , Brain Chemistry/drug effects , Brain Chemistry/physiology , Calcitonin Gene-Related Peptide/analysis , Calcitonin Gene-Related Peptide/metabolism , Dura Mater/chemistry , Dura Mater/drug effects , Fluorescent Dyes/analysis , Fluorescent Dyes/pharmacology , Ganglia, Autonomic/chemistry , Ganglia, Autonomic/drug effects , Ganglia, Sensory/chemistry , Ganglia, Sensory/diagnostic imaging , Male , Rats , Rats, Sprague-Dawley
4.
Cephalalgia ; 39(11): 1358-1365, 2019 10.
Article in English | MEDLINE | ID: mdl-31475573

ABSTRACT

BACKGROUND: Botulinum neurotoxin type A, an FDA-approved prophylactic drug for chronic migraine, is thought to achieve its therapeutic effect through blocking activation of unmyelinated meningeal nociceptors and their downstream communications with myelinated nociceptors and potentially the vasculature and immune cells. Prior investigations to determine botulinum neurotoxin type A effects on meningeal nociceptors were carried out in male rats and tested with stimuli that act outside the blood brain barrier. Here, we sought to explore the effects of extracranial injections of botulinum neurotoxin type A on activation of meningeal nociceptors by cortical spreading depression, an event which occurs inside the blood brain barrier, in female rats. MATERIAL AND METHODS: Using single-unit recording, we studied myelinated C- and unmyelinated Aδ-meningeal nociceptors' responses to cortical spreading depression 7-14 days after injection of botulinum neurotoxin type A or saline along calvarial sutures. RESULTS: In female rats, responses to cortical spreading depression were typically more prolonged and, in some cases, began at relatively longer latencies post-cortical spreading depression, than had been observed in previous studies in male rats. Extracranial administration of botulinum neurotoxin type A reduced significantly the prolonged firing of the meningeal nociceptors, in the combined sample of Aδ- and C-fiber, but not their response probability. DISCUSSION: The findings suggest that the mechanism of action by which botulinum neurotoxin type A prevents migraine differ from the one by which calcitonin gene-related peptide monoclonal antibodies prevent migraine and that even when the origin of migraine is central (i.e. in the cortex), a peripherally acting drug can intercept/prevent the headache.


Subject(s)
Botulinum Toxins, Type A/pharmacology , Cortical Spreading Depression/drug effects , Meninges/drug effects , Neuromuscular Agents/pharmacology , Nociceptors/drug effects , Animals , Female , Nerve Fibers, Unmyelinated/drug effects , Rats , Rats, Sprague-Dawley
5.
J Neuroophthalmol ; 39(1): 94-102, 2019 03.
Article in English | MEDLINE | ID: mdl-30762717

ABSTRACT

BACKGROUND: Photophobia is commonly associated with migraine, meningitis, concussion, and a variety of ocular diseases. Advances in our ability to trace multiple brain pathways through which light information is processed have paved the way to a better understanding of the neurobiology of photophobia and the complexity of the symptoms triggered by light. PURPOSE: The purpose of this review is to summarize recent anatomical and physiological studies on the neurobiology of photophobia with emphasis on migraine. RECENT FINDINGS: Observations made in blind and seeing migraine patients, and in a variety of animal models, have led to the discovery of a novel retino-thalamo-cortical pathway that carries photic signal from melanopsinergic and nonmelanopsinergic retinal ganglion cells (RGCs) to thalamic neurons. Activity of these neurons is driven by migraine and their axonal projections convey signals about headache and light to multiple cortical areas involved in the generation of common migraine symptoms. Novel projections of RGCs into previously unidentified hypothalamic neurons that regulate parasympathetic and sympathetic functions have also been discovered. Finally, recent work has led to a novel understanding of color preference in migraine-type photophobia and of the roles played by the retina, thalamus, and cortex. SUMMARY: The findings provide a neural substrate for understanding the complexity of aversion to light in patients with migraine and neuro-ophthalmologic other disorders.


Subject(s)
Cerebral Cortex/physiopathology , Migraine Disorders/complications , Neural Pathways/physiopathology , Photophobia/etiology , Retinal Ganglion Cells/physiology , Thalamus/physiopathology , Animals , Humans , Migraine Disorders/physiopathology , Photophobia/physiopathology
6.
J Neurosci ; 39(10): 1867-1880, 2019 03 06.
Article in English | MEDLINE | ID: mdl-30622169

ABSTRACT

Current understanding of the origin of occipital headache falls short of distinguishing between cause and effect. Most preclinical studies involving trigeminovascular neurons sample neurons that are responsive to stimulation of dural areas in the anterior 2/3 of the cranium and the periorbital skin. Hypothesizing that occipital headache may involve activation of meningeal nociceptors that innervate the posterior ⅓ of the dura, we sought to map the origin and course of meningeal nociceptors that innervate the posterior dura overlying the cerebellum. Using AAV-GFP tracing and single-unit recording techniques in male rats, we found that neurons in C2-C3 DRGs innervate the dura of the posterior fossa; that nearly half originate in DRG neurons containing CGRP and TRPV1; that nerve bundles traverse suboccipital muscles before entering the cranium through bony canals and large foramens; that central neurons receiving nociceptive information from the posterior dura are located in C2-C4 spinal cord and that their cutaneous and muscle receptive fields are found around the ears, occipital skin and neck muscles; and that administration of inflammatory mediators to their dural receptive field, sensitize their responses to stimulation of the posterior dura, peri-occipital skin and neck muscles. These findings lend rationale for the common practice of attempting to alleviate migraine headaches by targeting the greater and lesser occipital nerves with anesthetics. The findings also raise the possibility that such procedures may be more beneficial for alleviating occipital than non-occipital headaches and that occipital migraines may be associated more closely with cerebellar abnormalities than in non-occipital migraines.SIGNIFICANCE STATEMENT Occipital headaches are common in both migraine and non-migraine headaches. Historically, two distinct scenarios have been proposed for such headaches; the first suggests that the headaches are caused by spasm or tension of scalp, shoulders, and neck muscles inserted in the occipital region, whereas the second suggests that these headaches are initiated by activation of meningeal nociceptors. The current study shows that the posterior dura overlying the cerebellum is innervated by cervicovascular neurons in C2 DRG whose axons reach the posterior dura through multiple intracranial and extracranial pathways, and sensitization of central cervicovascular neurons from the posterior dura can result in hyper-responsiveness to stimulation of neck muscles. The findings suggest that the origin of occipital and frontal migraine may differ.


Subject(s)
Dura Mater/cytology , Dura Mater/physiology , Ganglia, Spinal/cytology , Ganglia, Spinal/physiology , Headache/physiopathology , Neurons/cytology , Neurons/physiology , Nociceptors/physiology , Animals , Cervical Cord/physiology , Male , Neural Pathways/cytology , Neural Pathways/physiology , Neuroanatomical Tract-Tracing Techniques , Rats, Sprague-Dawley
7.
Cephalalgia ; 39(13): 1623-1634, 2019 11.
Article in English | MEDLINE | ID: mdl-29940781

ABSTRACT

OBJECTIVE: To review clinical and pre-clinical evidence supporting the role of visual pathways, from the eye to the cortex, in the development of photophobia in headache disorders. BACKGROUND: Photophobia is a poorly understood light-induced phenomenon that emerges in a variety of neurological and ophthalmological conditions. Over the years, multiple mechanisms have been proposed to explain its causes; however, scarce research and lack of systematic assessment of photophobia in patients has made the search for answers quite challenging. In the field of headaches, significant progress has been made recently on how specific visual networks contribute to photophobia features such as light-induced intensification of headache, increased perception of brightness and visual discomfort, which are frequently experienced by migraineurs. Such progress improved our understanding of the phenomenon and points to abnormal processing of light by both cone/rod-mediated image-forming and melanopsin-mediated non-image-forming visual pathways, and the consequential transfer of photic signals to multiple brain regions involved in sensory, autonomic and emotional regulation. CONCLUSION: Photophobia phenotype is diverse, and the relative contribution of visual, trigeminal and autonomic systems may depend on the disease it emerges from. In migraine, photophobia could result from photic activation of retina-driven pathways involved in the regulation of homeostasis, making its association with headache more complex than previously thought.


Subject(s)
Headache/physiopathology , Photophobia/physiopathology , Visual Pathways/physiopathology , Animals , Blindness/physiopathology , Brain Stem/physiopathology , Color , Headache/complications , Humans , Light/adverse effects , Mesencephalon/physiopathology , Mice , Migraine Disorders/complications , Migraine Disorders/physiopathology , Photic Stimulation/adverse effects , Photophobia/etiology , Retinal Ganglion Cells/physiology , Retinal Rod Photoreceptor Cells/physiology , Retinal Rod Photoreceptor Cells/radiation effects , Rod Opsins/physiology , Somatosensory Cortex/physiopathology , Thalamus/physiopathology
8.
Cephalalgia ; 39(13): 1675-1682, 2019 11.
Article in English | MEDLINE | ID: mdl-30079744

ABSTRACT

OBJECTIVE: To review and discuss the literature on the role of thalamic structure and function in migraine. DISCUSSION: The thalamus holds an important position in our understanding of allodynia, central sensitization and photophobia in migraine. Structural and functional findings suggest abnormal functional connectivity between the thalamus and various cortical regions pointing towards an altered pain processing in migraine. Pharmacological nociceptive modulation suggests that the thalamus is a potential drug target. CONCLUSION: A critical role for the thalamus in migraine-related allodynia and photophobia is well established. Additionally, the thalamus is most likely involved in the dysfunctional pain modulation and processing in migraine, but further research is needed to clarify the exact clinical implications of these findings.


Subject(s)
Central Nervous System Sensitization/physiology , Migraine Disorders/physiopathology , Analgesics/pharmacology , Analgesics/therapeutic use , Brain Mapping , Cerebral Cortex/physiopathology , Connectome , Emotions/physiology , Humans , Hyperalgesia/etiology , Hyperalgesia/physiopathology , Magnetic Resonance Imaging , Migraine Disorders/complications , Migraine Disorders/diagnostic imaging , Migraine Disorders/pathology , Neural Pathways/physiopathology , Nociception/physiology , Organ Size , Pain Perception/physiology , Photophobia/etiology , Photophobia/physiopathology , Positron-Emission Tomography , Proton Magnetic Resonance Spectroscopy , Thalamic Nuclei/physiopathology , Thalamus/diagnostic imaging , Thalamus/drug effects , Thalamus/pathology , Thalamus/physiopathology , Tomography, X-Ray Computed
9.
Pain ; 160(3): 569-578, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30376534

ABSTRACT

Migraine-type photophobia, most commonly described as exacerbation of headache by light, affects nearly 90% of the patients. It is the most bothersome symptom accompanying an attack. Using subjective psychophysical assessments, we showed that migraine patients are more sensitive to all colors of light during ictal than during interictal phase and that control subjects do not experience pain when exposed to different colors of light. Based on these findings, we suggested that color preference is unique to migraineurs (as it was not found in control subjects) rather than migraine phase (as it was found in both phases). To identify the origin of this photophobia in migraineurs, we compared the electrical waveforms that were generated in the retina and visual cortex of 46 interictal migraineurs to those generated in 42 healthy controls using color-based electroretinography and visual-evoked potential paradigms. Unexpectedly, it was the amplitude of the retinal rod-driven b wave, which was consistently larger (by 14%-19% in the light-adapted and 18%-34% in the dark-adapted flash ERG) in the migraineurs than in the controls, rather than the retinal cone-driven a wave or the visual-evoked potentials that differs most strikingly between the 2 groups. Mechanistically, these findings suggest that the inherent hypersensitivity to light among migraine patients may originate in the retinal rods rather than retinal cones or the visual cortex. Clinically, the findings may explain why migraineurs complain that the light is too bright even when it is dim to the extent that nonmigraineurs feel as if they are in a cave.


Subject(s)
Dark Adaptation/physiology , Migraine Disorders/complications , Photophobia/complications , Retina/physiopathology , Visual Cortex/physiopathology , Adult , Electroretinography , Evoked Potentials, Visual/physiology , Female , Humans , Male , Middle Aged , Photic Stimulation , Psychophysics
10.
Pain ; 159(10): 2030-2034, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29905657

ABSTRACT

Aversion to light is common among migraineurs undergoing acute attacks. Using psychophysical assessments in patients with episodic migraine, we reported that white, blue, amber, and red lights exacerbate migraine headache in a significantly larger percentage of patients and to a greater extent compared with green light. This study aimed at determining whether these findings are phase-dependent-namely, manifested exclusively during migraine (ictally) but not in its absence (interictally), or condition-dependent-ie, expressed uniquely in migraineurs but not in healthy controls. To determine whether the color preference of migraine-type photophobia is phase- or condition-dependent, we compared the effects of each color of light in each intensity between migraineurs during and in-between attacks and healthy controls. During the ictal and interictal phases, the proportion of migraineurs reporting changes in headache severity when exposed to the different colors of light increased in accordance with elevated light intensities. During the ictal phase, white, blue, amber, and red lights exacerbated headaches in ∼80% of the patients; however, during the interictal phase, light initiated headache in only 16% to 19%. Notably, green light exacerbated headaches in 40% and triggered headaches in 3% of the patients studied during the ictal and interictal phases, respectively. With one exception (highest red light intensity), no control subject reported headache in response to the light stimuli. These findings suggest that color preference is unique to migraineurs-as it was not found in control subjects-and that it is independent of whether or not the patients are in their ictal or interictal phase.


Subject(s)
Color Perception/physiology , Migraine Disorders/complications , Photophobia/etiology , Adult , Case-Control Studies , Female , Humans , Light/adverse effects , Male , Middle Aged , Psychophysics
11.
J Neurosci ; 37(44): 10587-10596, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28972120

ABSTRACT

Calcitonin gene-related peptide (CGRP), the most abundant neuropeptide in primary afferent sensory neurons, is strongly implicated in the pathophysiology of migraine headache, but its role in migraine is still equivocal. As a new approach to migraine treatment, humanized anti-CGRP monoclonal antibodies (CGRP-mAbs) were developed to reduce the availability of CGRP, and were found effective in reducing the frequency of chronic and episodic migraine. We recently tested the effect of fremanezumab (TEV-48125), a CGRP-mAb, on the activity of second-order trigeminovascular dorsal horn neurons that receive peripheral input from the cranial dura, and found a selective inhibition of high-threshold but not wide-dynamic range class of neurons. To investigate the basis for this selective inhibitory effect, and further explore the mechanism of action of CGRP-mAbs, we tested the effect of fremanezumab on the cortical spreading depression-evoked activation of mechanosensitive primary afferent meningeal nociceptors that innervate the cranial dura, using single-unit recording in the trigeminal ganglion of anesthetized male rats. Fremanezumab pretreatment selectively inhibited the responsiveness of Aδ neurons, but not C-fiber neurons, as reflected in a decrease in the percentage of neurons that showed activation by cortical spreading depression. These findings identify Aδ meningeal nociceptors as a likely site of action of fremanezumab in the prevention of headache. The selectivity in its peripheral inhibitory action may partly account for fremanezumab's selective inhibition of high-threshold, as a result of a predominant A-δ input to high-threshold neurons, but not wide dynamic-range dorsal horn neurons, and why it may not be effective in all migraine patients.SIGNIFICANCE STATEMENT Recently, we reported that humanized CGRP monoclonal antibodies (CGRP-mAbs) prevent activation and sensitization of high-threshold (HT) but not wide-dynamic range trigeminovascular neurons by cortical spreading depression (CSD). In the current paper, we report that CGRP-mAbs prevent the activation of Aδ but not C-type meningeal nociceptors by CSD. This is the first identification of an anti-migraine drug that appears to be selective for Aδ-fibers (peripherally) and HT neurons (centrally). As the main CGRP-mAb site of action appears to be situated outside the brain, we conclude that the initiation of the headache phase of migraine depends on activation of meningeal nociceptors, and that for selected patients, activation of the Aδ-HT pain pathway may be sufficient for the generation of headache perception.


Subject(s)
Antibodies, Monoclonal/pharmacology , Calcitonin Gene-Related Peptide/antagonists & inhibitors , Myelin Sheath/drug effects , Nerve Fibers, Myelinated/drug effects , Nerve Fibers, Unmyelinated/drug effects , Nociceptors/drug effects , Animals , Calcitonin Gene-Related Peptide/physiology , Humans , Male , Myelin Sheath/physiology , Nerve Fibers, Myelinated/physiology , Nerve Fibers, Unmyelinated/physiology , Nociceptors/physiology , Rats , Rats, Sprague-Dawley
12.
Proc Natl Acad Sci U S A ; 114(28): E5683-E5692, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28652355

ABSTRACT

Migraineurs avoid light because it intensifies their headache. However, this is not the only reason for their aversion to light. Studying migraineurs and control subjects, we found that lights triggered more changes in autonomic functions and negative emotions during, rather than in the absence of, migraine or in control subjects, and that the association between light and positive emotions was stronger in control subjects than migraineurs. Seeking to define a neuroanatomical substrate for these findings, we showed that, in rats, axons of retinal ganglion cells converge on hypothalamic neurons that project directly to nuclei in the brainstem and spinal cord that regulate parasympathetic and sympathetic functions and contain dopamine, histamine, orexin, melanin-concentrating hormone, oxytocin, and vasopressin. Although the rat studies define frameworks for conceptualizing how light triggers the symptoms described by patients, the human studies suggest that the aversive nature of light is more complex than its association with headache intensification.


Subject(s)
Hypothalamus/physiology , Light , Migraine Disorders/physiopathology , Neurons/physiology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Autonomic Nervous System/physiology , Case-Control Studies , Color , Emotions , Female , Humans , Male , Middle Aged , Models, Neurological , Photophobia , Rats , Rats, Sprague-Dawley , Retina/physiology , Sympathetic Nervous System/physiology , Young Adult
13.
J Neurosci ; 37(30): 7149-7163, 2017 07 26.
Article in English | MEDLINE | ID: mdl-28642283

ABSTRACT

A large body of evidence supports an important role for calcitonin gene-related peptide (CGRP) in migraine pathophysiology. This evidence gave rise to a global effort to develop a new generation of therapeutics that inhibit the interaction of CGRP with its receptor in migraineurs. Recently, a new class of such drugs, humanized anti-CGRP monoclonal antibodies (CGRP-mAbs), were found to be effective in reducing the frequency of migraine. The purpose of this study was to better understand how the CGRP-mAb fremanezumab (TEV-48125) modulates meningeal sensory pathways. To answer this question, we used single-unit recording to determine the effects of fremanezumab (30 mg/kg, IV) and its isotype control Ab on spontaneous and evoked activity in naive and cortical spreading depression (CSD)-sensitized trigeminovascular neurons in the spinal trigeminal nucleus of anesthetized male and female rats. The study demonstrates that, in both sexes, fremanezumab inhibited naive high-threshold (HT) neurons, but not wide-dynamic range trigeminovascular neurons, and that the inhibitory effects on the neurons were limited to their activation from the intracranial dura but not facial skin or cornea. In addition, when given sufficient time, fremanezumab prevents the activation and sensitization of HT neurons by CSD. Mechanistically, these findings suggest that HT neurons play a critical role in the initiation of the perception of headache and the development of cutaneous allodynia and central sensitization. Clinically, the findings may help to explain the therapeutic benefit of CGRP-mAb in reducing headaches of intracranial origin such as migraine with aura and why this therapeutic approach may not be effective for every migraine patient.SIGNIFICANCE STATEMENT Calcitonin gene-related peptide (CGRP) monoclonal antibodies (CGRP-mAbs) are capable of preventing migraine. However, their mechanism of action is unknown. In the current study, we show that, if given enough time, a CGRP-mAb can prevent the activation and sensitization of high-threshold (central) trigeminovascular neurons by cortical spreading depression, but not their activation from the skin or cornea, suggesting a potential explanation for selectivity to migraine headache, but not other pains, and a predominantly peripheral site of action.


Subject(s)
Antibodies, Monoclonal/immunology , Calcitonin Gene-Related Peptide/immunology , Neurovascular Coupling/physiology , Nociceptors/physiology , Trigeminal Nucleus, Spinal/physiology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/pharmacology , Cortical Spreading Depression/physiology , Female , Humans , Male , Neurovascular Coupling/drug effects , Nociceptors/drug effects , Rats , Rats, Sprague-Dawley , Trigeminal Nucleus, Spinal/drug effects
14.
Headache ; 57 Suppl 2: 97-111, 2017 May.
Article in English | MEDLINE | ID: mdl-28485844

ABSTRACT

Dynamic thalamic regulation of sensory signals allows the cortex to adjust better to rapidly changing behavioral, physiological, and environmental demands. To fulfill this role, thalamic neurons must themselves be subjected to constantly changing modulatory inputs that originate in multiple neurochemical pathways involved in autonomic, affective, and cognitive functions. This review defines a chemical framework for thinking about the complexity of factors that modulate the response properties of relay trigeminovascular thalamic neurons. Following the presentation of scientific evidence for monosynaptic connections between thalamic trigeminovascular neurons and axons containing glutamate, GABA, dopamine, noradrenaline, serotonin, histamine, orexin, and melanin-concentrating hormone, this review synthesizes a large body of data to propose that the transmission of headache-related nociceptive signals from the thalamus to the cortex is modulated by potentially opposing forces and that the so-called 'decision' of which system (neuropeptide/neurotransmitter) will dominate the firing of a trigeminovascular thalamic neuron at any given time is determined by the constantly changing physiological (sleep, wakefulness, food intake, body temperature, heart rate, blood pressure), behavioral (addiction, isolation), cognitive (attention, learning, memory use), and affective (stress, anxiety, depression, anger) adjustment needed to keep homeostasis.


Subject(s)
Migraine Disorders/physiopathology , Neural Pathways/physiopathology , Neuropeptides/metabolism , Neurotransmitter Agents/metabolism , Synaptic Transmission/physiology , Animals , Cerebral Cortex/metabolism , Cerebral Cortex/physiopathology , Humans , Migraine Disorders/metabolism , Neural Pathways/metabolism , Thalamus/metabolism , Thalamus/physiopathology
15.
J Neurosci ; 36(30): 8026-36, 2016 07 27.
Article in English | MEDLINE | ID: mdl-27466345

ABSTRACT

UNLABELLED: For many years, neurobiological theories have emphasized the importance of neuronal oscillations in the emergence of brain function. At the same time, clinical studies have shown that disturbances or irregularities in brain rhythms may relate to various common neurological conditions, including migraine. Increasing evidence suggests that the CNS plays a fundamental role in the predisposition to develop different forms of headache. Here, we present human imaging data that strongly support the presence of abnormal low-frequency oscillations (LFOs) in thalamocortical networks of patients in the interictal phase of migraine. Our results show that the main source of arrhythmic activity was localized to the higher-order thalamic relays of the medial dorsal nucleus. In addition, spontaneous LFOs in the thalamus were selectively associated with the headache attack frequency, meaning that the varying amplitude of dysrhythmia could predispose patients to recurrent attacks. Rhythmic cortical feedback to the thalamus is a major factor in the amplification of thalamocortical oscillations, making it a strong candidate for influencing neuronal excitability. We further speculate that the intrinsic dynamics of thalamocortical network oscillations are crucial for early sensory processing and therefore could underlie important pathophysiological processes involved in multisensory integration. SIGNIFICANCE STATEMENT: In many cases, migraine attacks are thought to begin centrally. A major obstacle to studying intrinsic brain activity has been the identification of the precise anatomical structures and functional networks that are involved in migraine. Here, we present imaging data that strongly support the presence of abnormal low-frequency oscillations in thalamocortical networks of patients in the interictal phase of migraine. This arrhythmic activity was localized to the higher-order thalamic relays of the medial dorsal nucleus and was selectively associated with headache attack frequency. Rhythmic cortical feedback to the thalamus is a major factor in the amplification of thalamocortical oscillations, making it a strong candidate for influencing neuronal excitability and higher-level processes involved in multisensory integration.


Subject(s)
Biological Clocks , Brain Waves , Cerebral Cortex/physiopathology , Migraine Disorders/physiopathology , Nerve Net/physiopathology , Thalamus/physiopathology , Adolescent , Adult , Brain Mapping , Female , Humans , Male , Middle Aged , Neural Pathways/physiopathology , Young Adult
16.
Brain ; 139(Pt 7): 1971-86, 2016 07.
Article in English | MEDLINE | ID: mdl-27190022

ABSTRACT

Migraine headache is uniquely exacerbated by light. Using psychophysical assessments in patients with normal eyesight we found that green light exacerbates migraine headache significantly less than white, blue, amber or red lights. To delineate mechanisms, we used electroretinography and visual evoked potential recording in patients, and multi-unit recording of dura- and light-sensitive thalamic neurons in rats to show that green activates cone-driven retinal pathways to a lesser extent than white, blue and red; that thalamic neurons are most responsive to blue and least responsive to green; and that cortical responses to green are significantly smaller than those generated by blue, amber and red lights. These findings suggest that patients' experience with colour and migraine photophobia could originate in cone-driven retinal pathways, fine-tuned in relay thalamic neurons outside the main visual pathway, and preserved by the cortex. Additionally, the findings provide substrate for the soothing effects of green light.


Subject(s)
Electroretinography/methods , Evoked Potentials, Visual/physiology , Migraine Disorders/physiopathology , Neurons/physiology , Photophobia/physiopathology , Retinal Cone Photoreceptor Cells/physiology , Thalamus/physiopathology , Visual Pathways/physiopathology , Adolescent , Adult , Animals , Female , Humans , Male , Middle Aged , Migraine Disorders/complications , Photic Stimulation , Photophobia/etiology , Rats , Rats, Sprague-Dawley , Young Adult
17.
J Neurosci ; 35(17): 6619-29, 2015 Apr 29.
Article in English | MEDLINE | ID: mdl-25926442

ABSTRACT

Migraine is a common, multifactorial, disabling, recurrent, hereditary neurovascular headache disorder. It usually strikes sufferers a few times per year in childhood and then progresses to a few times per week in adulthood, particularly in females. Attacks often begin with warning signs (prodromes) and aura (transient focal neurological symptoms) whose origin is thought to involve the hypothalamus, brainstem, and cortex. Once the headache develops, it typically throbs, intensifies with an increase in intracranial pressure, and presents itself in association with nausea, vomiting, and abnormal sensitivity to light, noise, and smell. It can also be accompanied by abnormal skin sensitivity (allodynia) and muscle tenderness. Collectively, the symptoms that accompany migraine from the prodromal stage through the headache phase suggest that multiple neuronal systems function abnormally. As a consequence of the disease itself or its genetic underpinnings, the migraine brain is altered structurally and functionally. These molecular, anatomical, and functional abnormalities provide a neuronal substrate for an extreme sensitivity to fluctuations in homeostasis, a decreased ability to adapt, and the recurrence of headache. Advances in understanding the genetic predisposition to migraine, and the discovery of multiple susceptible gene variants (many of which encode proteins that participate in the regulation of glutamate neurotransmission and proper formation of synaptic plasticity) define the most compelling hypothesis for the generalized neuronal hyperexcitability and the anatomical alterations seen in the migraine brain. Regarding the headache pain itself, attempts to understand its unique qualities point to activation of the trigeminovascular pathway as a prerequisite for explaining why the pain is restricted to the head, often affecting the periorbital area and the eye, and intensifies when intracranial pressure increases.


Subject(s)
Brain/physiopathology , Migraine Disorders/pathology , Migraine Disorders/physiopathology , Brain/pathology , Disabled Persons , Humans , Migraine Disorders/genetics , Migraine Disorders/therapy , Neurons/physiology
18.
PLoS One ; 9(8): e103929, 2014.
Article in English | MEDLINE | ID: mdl-25090640

ABSTRACT

Dynamic thalamic regulation of sensory signals allows the cortex to adjust better to rapidly changing behavioral, physiological and environmental demands. To fulfill this role, thalamic neurons must themselves be subjected to constantly changing modulatory inputs that originate in multiple neurochemical pathways involved in autonomic, affective and cognitive functions. Our overall goal is to define an anatomical framework for conceptualizing how a 'decision' is made on whether a trigeminovascular thalamic neuron fires, for how long, and at what frequency. To begin answering this question, we determine which neuropeptides/neurotransmitters are in a position to modulate thalamic trigeminovascular neurons. Using a combination of in-vivo single-unit recording, juxtacellular labeling with tetramethylrhodamine dextran (TMR) and in-vitro immunohistochemistry, we found that thalamic trigeminovascular neurons were surrounded by high density of axons containing biomarkers of glutamate, GABA, dopamine and serotonin; moderate density of axons containing noradrenaline and histamine; low density of axons containing orexin and melanin concentrating hormone (MCH); but not axons containing CGRP, serotonin 1D receptor, oxytocin or vasopressin. In the context of migraine, the findings suggest that the transmission of headache-related nociceptive signals from the thalamus to the cortex may be modulated by opposing forces (i.e., facilitatory, inhibitory) that are governed by continuous adjustments needed to keep physiological, behavioral, cognitive and emotional homeostasis.


Subject(s)
Anxiety/physiopathology , Migraine Disorders/physiopathology , Neurons/pathology , Neurotransmitter Agents/metabolism , Sleep , Stress, Psychological/physiopathology , Thalamus/physiopathology , Trigeminal Nerve/physiopathology , Animals , Anxiety/psychology , Biomarkers/metabolism , Brain Stem/physiopathology , Calcitonin Gene-Related Peptide/metabolism , Dopamine/metabolism , Eating , Glutamates/metabolism , Histamine/metabolism , Hypothalamic Hormones/metabolism , Hypothalamus/physiopathology , Intracellular Signaling Peptides and Proteins/metabolism , Male , Melanins/metabolism , Migraine Disorders/psychology , Neuropeptides/metabolism , Norepinephrine/metabolism , Orexins , Oxytocin/metabolism , Pituitary Hormones/metabolism , Rats, Sprague-Dawley , Serotonin/metabolism , Trigeminal Nerve/blood supply , Vasopressins/metabolism
19.
Pain ; 154 Suppl 12013 Dec.
Article in English | MEDLINE | ID: mdl-24347803

ABSTRACT

Scientific evidence support the notion that migraine pathophysiology involves inherited alteration of brain excitability, intracranial arterial dilatation, recurrent activation and sensitization of the trigeminovascular pathway, and consequential structural and functional changes in genetically susceptible individuals. Evidence of altered brain excitability emerged from clinical and preclinical investigation of sensory auras, ictal and interictal hypersensitivity to visual, auditory and olfactory stimulation, and reduced activation of descending inhibitory pain pathways. Data supporting the activation and sensitization of the trigeminovascular system include the progressive development of cephalic and whole-body cutaneous allodynia during a migraine attack. Also, structural and functional alterations include the presence of subcortical white mater lesions, thickening of cortical areas involved in processing sensory information, and cortical neuroplastic changes induced by cortical spreading depression. Here, we review recent anatomical data on the trigeminovascular pathway and its activation by cortical spreading depression, a novel understanding of the neural substrate of migraine-type photophobia, and modulation of the trigeminovascular pathway by the brainstem, hypothalamus and cortex.

SELECTION OF CITATIONS
SEARCH DETAIL
...