Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 16(41): e2002445, 2020 10.
Article in English | MEDLINE | ID: mdl-32954652

ABSTRACT

The quest for an all-organic nanosystem with negligible cytotoxicity and remarkable in vivo tumor theranostic capability is inescapably unending. Hitherto, the landscape of available photothermal agents is dominated by metal-based nanoparticles (NPs) with attendant in vivo negatives. Here, an all-organic-composed theranostic nanosystem with outstanding biocompatibility for fluorescence image-guided tumor photothermal therapy, and as a potential alternative to metal-based photothermal agents is developed. This is rationally achieved by compartmentalizing indocyanine green (ICG) in glycol chitosan (GC)-polypyrrole (PP) nanocarrier to form hybrid ICG@GC-PP NPs (≈65 nm). The compartmentalization strategy, alongside the high photothermal conversion ability of PP jointly enhances the low photostability of free ICG. Advantageously, ICG@GC-PP is endowed with an impeccable in vivo performance by the well-known biocompatibility track records of its individual tri organo-components (GC, PP, and ICG). As a proof of concept, ICG@GC-PP NPs enables a sufficiently prolonged tumor diagnosis by fluorescence imaging up to 20 h post-injection. Furthermore, owing to the complementary heating performances of PP and ICG, ICG@GC-PP NPs-treated mice by one-time near-infrared irradiation exhibit total tumor regression within 14 days post-treatment. Therefore, leveraging the underlying benefits of this study will help to guide the development of new all-organic biocompatible systems in synergism, for safer tumor theranostics.


Subject(s)
Nanoparticles , Neoplasms , Animals , Cell Line, Tumor , Indocyanine Green , Mice , Neoplasms/diagnostic imaging , Neoplasms/therapy , Optical Imaging , Phototherapy , Polymers , Pyrroles , Theranostic Nanomedicine
2.
J Hazard Mater ; 392: 122288, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32109794

ABSTRACT

This research reports a new mercury adsorbent in which Fe3O4 as a core was embedded into the shell of ZIF-90 in a one-pot synthesis and the subsequent post synthesis modification (PSM) of its surface with cysteine covalently, via a Schiff's base reaction. Poly acrylic acid (PAA) was capped on the surface of nanoparticles to prevent agglomeration of the nanoparticles. In addition, -COOH groups of PAA coordinated with Zn2+ of ZIF-90 and this provided the platform for ZIF-90 to grow on the nanoparticles forming the core-shell structure. Based on the strong interactions between the thiol groups on the adsorbent and mercury ions as elucidated by the XPS analysis, the as-synthesized adsorbent showed selectivity for Hg2+. The sorbent exhibited high adsorption capacity of 900 mg g-1 towards Hg2+ as calculated at pH 4 and the adsorption kinetics followed pseudo-second-order kinetics model better. The Hg2+ loaded adsorbent was easily regenerated and it maintained about 70 % efficiency after the third use. Low-cost, readily available and green materials, facile preparation, efficient removal and the breakthrough in three times recyclability give the novel ZIF-90 based hybrid nanoadsorbent wide prospects in the field of environmental remediation as a good adsorbent for Hg2+ removal in wastewater.


Subject(s)
Acrylic Resins/chemistry , Cysteine/chemistry , Imidazoles/chemistry , Magnetite Nanoparticles/chemistry , Mercury/chemistry , Water Pollutants, Chemical/chemistry , Zeolites/chemistry , Adsorption , Wastewater , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...