Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Insect Sci ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956988

ABSTRACT

Entomopathogenic fungi may interact with insects' symbiotic bacteria during infection. We hypothesized that topical infection with Beauveria bassiana may alter the microbiota of the Colorado potato beetle (CPB) and that these modifications may alter the course of mycoses. We used a model with two concentrations of conidia: (1) high concentration that causes rapid (acute) pathogenesis with fast mortality followed by bacterial decomposition of insects; (2) lower concentration that leads to prolonged pathogenesis ending in conidiation on cadavers. The fungal infections increased loads of enterobacteria and bacilli on the cuticle surface and in hemolymph and midgut, and the greatest increase was detected during the acute mycosis. By contrast, stronger activation of IMD and JAK-STAT signaling pathways in integuments and fat body was observed during the prolonged mycosis. Relatively stable (nonpathogenic) conditions remained in the midgut during both scenarios of mycosis with slight changes in bacterial communities, the absence of mesh and stat expression, a decrease in reactive oxygen species production, and slight induction of Toll and IMD pathways. Oral administration of antibiotic and predominant CPB bacteria (Enterobacteriaceae, Lactococcus, Pseudomonas) led to minor and mainly antagonistic effects in survival of larvae infected with B. bassiana. We believe that prolonged mycosis is necessary for successful development of the fungus because such pathogenesis allows the host to activate antibacterial reactions. Conversely, after infection with high concentrations of the fungus, the host's resources are insufficient to fully activate antibacterial defenses, and this situation makes successful development of the fungus impossible.

2.
Sci Total Environ ; 922: 171284, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38432389

ABSTRACT

Humic thermokarst lakes of permafrost peatlands in Western Siberia Lowland (WSL) are major environmental controllers of carbon and nutrient storage in inland waters and greenhouse gases emissions to the atmosphere in the subarctic. In contrast to sizable former research devoted to hydrochemical and hydrobiological (phytoplankton) composition, zooplankton communities of these thermokarst lakes and thaw ponds remain poorly understood, especially along the latitudinal gradient, which is a perfect predictor of permafrost zones. To fill this gap, 69 thermokarst lakes of the WSL were sampled using unprecedented spatial coverage, from continuous to sporadic permafrost zone, in order to assess zooplankton (Cladocera, Copepoda, Rotifera) diversity and abundance across three main open water physiological seasons (spring, summer and autumn). We aimed at assessing the relationship of environmental factors (water column hydrochemistry, nutrients, and phytoplankton parameters) with the abundance and diversity of zooplankton. A total of 74 zooplankton species and taxa were detected, with an average eight taxa per lake/pond. Species richness increased towards the north and reached the maximum in the continuous permafrost zone with 13 species found in this zone only. In contrast, the number of species per waterbody decreased towards the north, which was mainly associated with a decrease in the number of cladocerans. Abundance and diversity of specific zooplankton groups strongly varied across the seasons and permafrost zones. Among the main environmental controllers, Redundancy Analysis revealed that water temperature, lake area, depth, pH, Dissolved Inorganic and Organic Carbon and CO2 concentrations were closely related to zooplankton abundance. Cladocerans were positively related to water temperature during all seasons. Copepods were positively related to depth and lake water pH in all seasons. Rotifers were related to different factors in each season, but were most strongly associated with DOC, depth, CH4, phytoplankton and cladoceran abundance. Under climate warming scenario, considering water temperature increase and permafrost boundary shift northward, one can expect an increase in the diversity and abundance of cladocerans towards the north which can lead to partial disappearance of copepods, especially rare calanoid species.


Subject(s)
Cladocera , Copepoda , Permafrost , Rotifera , Animals , Seasons , Siberia , Zooplankton/physiology , Lakes/chemistry , Rotifera/physiology , Phytoplankton/physiology , Copepoda/physiology , Carbon , Water
3.
J Vis Exp ; (201)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38047559

ABSTRACT

One of the major pests of potato Solanum tuberosum L. in the temperate zone is the insect Colorado potato beetle (CPB). Most studies on the immunity and diseases of the CPB are conducted during active feeding stages. Nonetheless, there are fewer studies on resting stages, although these beetles spend most of their life cycle in a state of winter diapause (hibernation). In this work, a method for investigating CPB hibernation under natural conditions was developed and tested, offering an opportunity to collect a sufficient number of individuals in winter. In this article, CPB survival was assessed, and infectious agents at different stages of hibernation were identified. CPB mortality increased during the hibernation, reaching a maximum in April-May. Entomopathogenic fungi (Beauveria, Isaria, and Lecanicillium) and bacteria Bacillus, Sphingobacterium, Peribacillus, Pseudomonas, and Serratia were isolated from the dead insects. The survival rate of the beetles for the entire hibernation period was 61%. No frozen or desiccated beetles were found, indicating the success of the presented method.


Subject(s)
Coleoptera , Hibernation , Solanum tuberosum , Animals , Larva , Colorado
4.
Microorganisms ; 11(4)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37110366

ABSTRACT

Entomopathogenic fungi can be inhibited by different soil microorganisms, but the effect of a soil microbiota on fungal growth, survival, and infectivity toward insects is insufficiently understood. We investigated the level of fungistasis toward Metarhizium robertsii and Beauveria bassiana in soils of conventional potato fields and kitchen potato gardens. Agar diffusion methods, 16S rDNA metabarcoding, bacterial DNA quantification, and assays of Leptinotarsa decemlineata survival in soils inoculated with fungal conidia were used. Soils of kitchen gardens showed stronger fungistasis toward M. robertsii and B. bassiana and at the same time the highest density of the fungi compared to soils of conventional fields. The fungistasis level depended on the quantity of bacterial DNA and relative abundance of Bacillus, Streptomyces, and some Proteobacteria, whose abundance levels were the highest in kitchen garden soils. Cultivable isolates of bacilli exhibited antagonism to both fungi in vitro. Assays involving inoculation of nonsterile soils with B. bassiana conidia showed trends toward elevated mortality of L. decemlineata in highly fungistatic soils compared to low-fungistasis ones. Introduction of antagonistic bacilli into sterile soil did not significantly change infectivity of B. bassiana toward the insect. The results support the idea that entomopathogenic fungi can infect insects within a hypogean habitat despite high abundance and diversity of soil antagonistic bacteria.

5.
Insects ; 13(12)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36555078

ABSTRACT

Different developmental stages of insects may be dissimilar in immunity functioning. Additionally, the stages often inhabit diverse environments with specific microbial communities. In the Colorado potato beetle, a strong increase in resistance to entomopathogenic fungi is observed during the intermolt period of last-instar larvae, but mechanisms of this change are insufficiently understood. We studied changes in the expression of immunity- and stress-related genes in the fat body and integument during this intermolt period by quantitative PCR. By the end of the instar, there was upregulation of transcription factors of Toll, IMD, and Jak-Stat pathways as well as genes encoding metalloprotease inhibitors, odorant-binding proteins, and heat shock proteins. Nonetheless, the expression of gene LdRBLk encoding ß-lectin did not change during this period. Most of the aforementioned genes were upregulated in response to Metarhizium robertsii topical infection. The expression alterations were more pronounced in recently molted larvae than in finishing feeding larvae and in the integument compared to the fat body. We believe that upregulation of immune-system- and stress-related genes at the end of the intermolt period is an adaptation caused by migration of larvae into soil, where the probability of encountering entomopathogenic fungi is high.

6.
Pest Manag Sci ; 78(9): 3823-3835, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35238478

ABSTRACT

BACKGROUND: We assume that certain representatives of gut microflora mediate immune changes during dysbiosis, accelerating septicemia caused by Bacillus thuringiensis. RESULTS: Co-introduction of Citrobacter freundii with Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt) led to an increase in Colorado potato beetle (CPB) larval mortality to 69.0% (1.3-5×) and a synergistic effect was observed from day 1 to day 6. Ultrathin sections of the CPB midgut showed autophagosome formation and partial destruction of gut microvilli under the influence of Bt, which was accompanied by pronounced hypersecretion of the endoplasmic reticulum with apocrine vesicle formation and oncotic changes in cells under the action of C. freundii. The destruction of gut tissues was accompanied by suppression of detoxification processes under the action of the bacteria and a decrease (2.8-3.5×) in the concentration of lipid oxidation products during Bt infection. In the first hours post combined treatment, we registered a slight increase in the total hemocyte count (THC) especially a predomination (1.4×) of immune-competent plasmatocytes. Oral administration of symbiotic and entomopathogenic bacteria to the CPB larvae significantly decreased the THC (1.4×) after 24 h and increased (1.1-1.5×) the detoxifying enzymes level in the lymph. These changes are likely to be associated with the destruction of hemocytes and the need to remove the toxic products of reactive oxygen species. CONCLUSION: The obtained results indicate that feeding of C. freundii and B. thuringiensis to the CPB larvae is accompanied by tissue changes that significantly affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bt. © 2022 Society of Chemical Industry.


Subject(s)
Bacillus thuringiensis , Coleoptera , Solanum tuberosum , Animals , Citrobacter freundii , Larva
7.
PLoS One ; 16(3): e0248704, 2021.
Article in English | MEDLINE | ID: mdl-33760838

ABSTRACT

Gut physiology and the bacterial community play crucial roles in insect susceptibility to infections and insecticides. Interactions among Colorado potato beetle Leptinotarsa decemlineata (Say), its bacterial associates, pathogens and xenobiotics have been insufficiently studied. In this paper, we present our study of the survival, midgut histopathology, activity of digestive enzymes and bacterial communities of L. decemlineata larvae under the influence of Bacillus thuringiensis var. tenebrionis (morrissoni) (Bt), a natural complex of avermectins and a combination of both agents. Moreover, we estimated the impact of culturable enterobacteria on the susceptibility of the larvae to Bt and avermectins. An additive effect between Bt and avermectins was established regarding the mortality of the larvae. Both agents led to the destruction of midgut tissues, a decrease in the activity of alpha-amylases and alkaline proteinases, a decrease in the Spiroplasma leptinotarsae relative abundance and a strong elevation of Enterobacteriaceae abundance in the midgut. Moreover, an elevation of the enterobacterial CFU count was observed under the influence of Bt and avermectins, and the greatest enhancement was observed after combined treatment. Insects pretreated with antibiotics were less susceptible to Bt and avermectins, but reintroduction of the predominant enterobacteria Enterobacter ludwigii, Citrobacter freundii and Serratia marcescens increased susceptibility to both agents. We suggest that enterobacteria play an important role in the acceleration of Bt infection and avermectin toxicoses in L. decemlineata and that the additive effect between Bt and avermectin may be mediated by alterations in the bacterial community.


Subject(s)
Bacillus thuringiensis/physiology , Coleoptera/microbiology , Insecticide Resistance , Insecticides/metabolism , Microbiota/drug effects , Pest Control, Biological/methods , Animals
8.
J Insect Physiol ; 116: 106-117, 2019 07.
Article in English | MEDLINE | ID: mdl-31077710

ABSTRACT

Susceptibility to the fungus Metarhizium robertsii and changes in host defences were evaluated in different stages of the intermoult period (4-6 h, 34-36 h and 84-86 h post moult in IV larval instars) of the Colorado potato beetle. A significant thickening of the cuticle during larval growth was accompanied by decreases in cuticle melanization, phenoloxidase activity and epicuticular hydrocarbon contents (C28-C32). At the same time, a decrease in the conidial adhesion rate and an increase in resistance to the fungus were observed. In addition, we recorded significant elevation of the encapsulation rate and total haemocyte counts in the haemolymph during the specified period. The activity of detoxification enzymes decreased in the haemolymph but increased in the fat body during larval growth. No significant differences in the fatty acid content in the epicuticle were observed. The role of developmental disorders in susceptibility to entomopathogenic fungi is also discussed.


Subject(s)
Antibiosis , Coleoptera/physiology , Metarhizium/physiology , Animals , Coleoptera/growth & development , Coleoptera/microbiology , Fat Body/enzymology , Fat Body/growth & development , Hemolymph/enzymology , Larva/growth & development , Larva/microbiology , Larva/physiology
9.
Ecotoxicology ; 23(9): 1690-700, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25119450

ABSTRACT

Ecosystems are subject to a combination of recurring anthropogenic and natural disturbances, such as climate change and pesticide exposure. Biological communities are known to develop tolerance to recurring disturbances due to successive changes at both the community and organismal levels. However, information on how additional stressors may affect the development of such community tolerance is scarce to date. We studied the influence of hydrological disturbance on the reaction of zooplankton communities to repeated insecticide pulses in outdoor microcosms. The communities were exposed to three successive pulses of the insecticide esfenvalerate (0.03, 0.3, and 3 µg/L) and to the gradual removal of water and its subsequent replacement over three cycles or to a constant water level. Except at the highest esfenvalerate concentration, the communities developed tolerance to the toxicant, as indicated by their decreasing reaction to subsequent insecticide applications, and this development was enhanced by hydrological disturbance. The pronounced decline of the key taxa Daphnia spp. through the combined action of the two stressors was identified as the main mechanism responsible for the increase in community tolerance under a fluctuating water level. Under a constant water level, the abundance of Daphnia spp. did not decrease significantly without the insecticide treatment, indicating that other mechanisms were responsible for the observed community tolerance. The present study shows that additional stressors can facilitate the development of community tolerance and that such facilitation is propagated through community-level mechanisms.


Subject(s)
Ecosystem , Insecticides/toxicity , Nitriles/toxicity , Pyrethrins/toxicity , Water Pollutants, Chemical/toxicity , Zooplankton/drug effects , Animals , Drug Tolerance , Environmental Monitoring , Fresh Water
10.
Glob Chang Biol ; 19(5): 1598-609, 2013 May.
Article in English | MEDLINE | ID: mdl-23504978

ABSTRACT

Considerable research efforts have been made to predict the influences of climate change on species composition in biological communities. However, little is known about how changing environmental conditions and anthropogenic pollution can affect aquatic communities in combination. We investigated the influence of short warming periods on the response of a zooplankton community to the insecticide esfenvalerate at a range of environmentally realistic concentrations (0.03, 0.3 and 3 µg L(-1) ) in 55 outdoor pond microcosms. Warming periods increased the cumulative water temperature, but did not exceed the maximum temperature measured under ambient conditions. Under warming conditions alone the abundance of some zooplankton taxa increased selectively compared to ambient conditions. This resulted in a shift in the community composition that had not recovered by the end of the experiment, 8 weeks after the last warming period. Regarding the pesticide exposure, short-term effects of esfenvalerate on the community structure and the sensitive taxa Daphnia spp. did not differ between the two temperature regimes. In contrast, long-term effects of esfenvalerate on Daphnia spp., a taxon that did not benefit from elevated temperatures, were observed twice as long under warming than under ambient conditions. This resulted in long-term effects on Daphnia spp. until 4 months after contamination at 3 µg L(-1) esfenvalerate. Under both temperature regimes, we identified strength of interspecific competition as the mechanism determining the time until recovery. However, enhanced interspecific competition under warming conditions was prolonged and explained the delayed recovery of Daphnia spp. from esfenvalerate. These results show that, for realistic prediction of the combined effects of changing environmental factors and toxicants on sensitive taxa, the impacts of stressors on the biotic interactions within the community need to be considered.


Subject(s)
Insecticides/pharmacology , Nitriles/pharmacology , Pyrethrins/pharmacology , Water Pollutants, Chemical/pharmacology , Zooplankton/drug effects , Zooplankton/physiology , Animals , Climate Change , Daphnia/drug effects , Daphnia/physiology , Gas Chromatography-Mass Spectrometry , Hot Temperature , Ponds , Solid Phase Extraction , Time Factors
11.
Aquat Toxicol ; 127: 9-20, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23063066

ABSTRACT

Climate change models predict an increase in the frequency and intensity of extreme fluctuations in water level in aquatic habitats. Therefore, it is necessary to understand the combined effects of hydrological fluctuations and toxicants on aquatic biological communities. We investigated the individual and combined effects of the insecticide esfenvalerate and recurring fluctuations in water level on zooplankton communities in a system of 55 outdoor pond microcosms. The communities were exposed to esfenvalerate contamination as a single pulse (at 0.03, 0.3, or 3µg/L) and gradual removal of water and its subsequent replacement over three cycles and monitored until 84 days after contamination. The results showed that the sensitivities of the community and its constituent populations to the toxicant were increased by the hydrological stress. Specifically, for both the community structure and abundance of Daphnia spp. the lowest-observed-effect concentrations (LOEC) were 0.03 and 0.3µg/L for the series with fluctuating and constant water levels, respectively. Despite these differences in sensitivity, the interactive effects of the two stressors were found to be additive for both the community structure and the abundance of the most affected species. Presumably, it was not possible to detect synergism due to the strong individual effects of the water level fluctuations. Recovery times in the series exposed to the highest pesticide concentration were 64 and 55 days under fluctuating and constant water level regimes, respectively. Competition and water quality are suggested to be the major factors that underlie the observed effects of fluctuations in the water level. For the ecological risk assessment of toxicants, the present results suggest that (i) community sensitivity may vary substantially, depending on the environmental context, and (ii) this variability can be assessed experimentally to derive safety factors (coefficients used to avoid unexpected effects and define safe concentrations of toxicants) based on empirical findings. This contrasts with the current approach where such factors are usually defined arbitrarily.


Subject(s)
Biodiversity , Fresh Water , Nitriles/toxicity , Pyrethrins/toxicity , Water Movements , Water Pollutants, Chemical/toxicity , Zooplankton/drug effects , Animals , Population Density
12.
Ecotoxicology ; 21(4): 1039-49, 2012 May.
Article in English | MEDLINE | ID: mdl-22311421

ABSTRACT

Xenobiotics alter the balance of competition between species and induce shifts in community composition. However, little is known about how these alterations affect the recovery of sensitive taxa. We exposed zooplankton communities to esfenvalerate (0.03, 0.3, and 3 µg/L) in outdoor microcosms and investigated the long-term effects on populations of Daphnia spp. To cover a broad and realistic range of environmental conditions, we established 96 microcosms with different treatments of shading and periodic harvesting. Populations of Daphnia spp. decreased in abundance for more than 8 weeks after contamination at 0.3 and 3 µg/L esfenvalerate. The period required for recovery at 0.3 and 3 µg/L was more than eight and three times longer, respectively, than the recovery period that was predicted on the basis of the life cycle of Daphnia spp. without considering the environmental context. We found that the recovery of sensitive Daphnia spp. populations depended on the initial pesticide survival and the related increase of less sensitive, competing taxa. We assert that this increase in the abundance of competing species, as well as sub-lethal effects of esfenvalerate, caused the unexpectedly prolonged effects of esfenvalerate on populations of Daphnia spp. We conclude that assessing biotic interactions is essential to understand and hence predict the effects and recovery from toxicant stress in communities.


Subject(s)
Daphnia/drug effects , Environmental Monitoring/methods , Nitriles/toxicity , Pesticides/toxicity , Pyrethrins/toxicity , Water Pollutants, Chemical/toxicity , Animals , Daphnia/growth & development , Life Cycle Stages/drug effects , Multivariate Analysis , Population Dynamics , Stress, Physiological , Toxicity Tests, Acute , Zooplankton/drug effects , Zooplankton/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...