Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 8380, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38104196

ABSTRACT

How aging affects cells of the human brain active milieu remains largely unknown. Here, we analyze astrocytes and neurons in the neocortical tissue of younger (22-50 years) and older (51-72 years) adults. Aging decreases the amount of reduced mitochondrial cytochromes in astrocytes but not neurons. The protein-to-lipid ratio decreases in astrocytes and increases in neurons. Aged astrocytes show morphological atrophy quantified by the decreased length of branches, decreased volume fraction of leaflets, and shrinkage of the anatomical domain. Atrophy correlates with the loss of gap junction coupling between astrocytes and increased input resistance. Aging is accompanied by the upregulation of glial fibrillary acidic protein (GFAP) and downregulation of membrane-cytoskeleton linker ezrin associated with leaflets. No significant changes in neuronal excitability or spontaneous inhibitory postsynaptic signaling is observed. Thus, brain aging is associated with the impaired morphological presence and mitochondrial malfunction of cortical astrocytes, but not neurons.


Subject(s)
Astrocytes , Cerebral Cortex , Humans , Aged , Astrocytes/metabolism , Cerebral Cortex/metabolism , Neurons/metabolism , Aging/metabolism , Glial Fibrillary Acidic Protein/metabolism , Atrophy/metabolism
2.
J Neurosci Methods ; 387: 109797, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36682730

ABSTRACT

BACKGROUND: Astrocytes play an essential role in the normal functioning of the nervous system and are active contributors to the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD). Therefore, to comprehend the astrocytes and amyloid plaques relationship there is a need for imaging techniques providing simultaneous visualization of astrocytes using fluorescence and amyloid plaques revealed by transmitted light microscopy. NEW METHOD: The possibility of simultaneous detection of astrocytes by immunocytochemistry (fluorescent) and amyloid plaques by cytochemical Alcian Blue (transparent) using confocal microscopy in 8-month-old 5хFAD mice samples shown. RESULTS: The described method supposes performing astrocytes fluorescent labelling by GFAP or S100beta and amyloid plaques staining by Alcian Blue. COMPARISON WITH EXISTING METHODS: Proposed approach circumvents some limitations of fluorescence microscopy, such as weak fluorescence, low contrast, fluorophore broad excitation/emission profile and chemical instability. CONCLUSIONS: The proposed technique provides high-quality resulting images of GFAP/s100beta- labelled astrocytes and Alcian Blue-stained amyloid plaques. These images are appliable for prospective qualitative and quantitative three-dimensional analysis due to the z-axis scanning. Moreover, it demonstrated the formation of stable Alcian Blue staining.


Subject(s)
Alzheimer Disease , Astrocytes , Mice , Animals , Alcian Blue , Astrocytes/pathology , Plaque, Amyloid/pathology , Prospective Studies , Alzheimer Disease/pathology , Microscopy, Confocal , Amyloid beta-Peptides , Mice, Transgenic
3.
Int J Mol Sci ; 23(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36362260

ABSTRACT

Data on the long-term consequences of a single episode of generalized seizures in infants are inconsistent. In this study, we examined the effects of pentylenetetrazole-induced generalized seizures in three-week-old rats. One month after the seizures, we detected a moderate neuronal loss in several hippocampal regions: CA1, CA3, and hilus, but not in the dentate gyrus. In addition, long-term synaptic potentiation (LTP) was impaired. We also found that the mechanism of plasticity induction was altered: additional activation of metabotropic glutamate receptors (mGluR1) is required for LTP induction in experimental rats. This disturbance of the plasticity induction mechanism is likely due to the greater involvement of perisynaptic NMDA receptors compared to receptors located in the core part of the postsynaptic density. This hypothesis is supported by experiments with selective blockades of core-located NMDA receptors by the use-dependent blocker MK-801. MK-801 had no effect on LTP induction in experimental rats and suppressed LTP in control animals. The weakening of the function of core-located NMDA receptors may be due to the disturbed clearance of glutamate from the synaptic cleft since the distribution of the astrocytic glutamate transporter EAAT2 in experimental animals was found to be altered.


Subject(s)
Pentylenetetrazole , Receptors, N-Methyl-D-Aspartate , Animals , Rats , Dizocilpine Maleate , Hippocampus/metabolism , Neuronal Plasticity , Pentylenetetrazole/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Seizures/chemically induced
4.
Molecules ; 26(11)2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34200173

ABSTRACT

Neuropeptides serve as neurohormones and local paracrine regulators that control neural networks regulating behavior, endocrine system and sensorimotor functions. Their expression is characterized by exceptionally restricted profiles. Circuit-specific and adaptive expression of neuropeptide genes may be defined by transcriptional and epigenetic mechanisms controlled by cell type and subtype sequence-specific transcription factors, insulators and silencers. The opioid peptide dynorphins play a critical role in neurological and psychiatric disorders, pain processing and stress, while their mutations cause profound neurodegeneration in the human brain. In this review, we focus on the prodynorphin gene as a model for the in-depth epigenetic and transcriptional analysis of expression of the neuropeptide genes. Prodynorphin studies may provide a framework for analysis of mechanisms relevant for regulation of neuropeptide genes in normal and pathological human brain.


Subject(s)
Brain/metabolism , Enkephalins/genetics , Epigenesis, Genetic/genetics , Protein Precursors/genetics , Transcription, Genetic/genetics , Analgesics, Opioid/metabolism , Animals , Epigenomics/methods , Gene Expression Regulation/genetics , Humans , Neuropeptides/genetics
5.
Eur J Neurosci ; 54(4): 5560-5573, 2021 08.
Article in English | MEDLINE | ID: mdl-34145943

ABSTRACT

In spite of its apparent symmetry, the spinal cord is asymmetric in its reflexes and gene expression patterns including leftward expression bias of the opioid and glutamate genes. To examine whether this is a general phenomenon for neurotransmitter and neurohormonal genes, we here characterized expression and co-expression (transcriptionally coordinated) patterns of genes of the renin-angiotensin system (RAS) that is involved in neuroprotection and pathological neuroplasticity in the left and right lumbar spinal cord. We also tested whether the RAS expression patterns were affected by unilateral brain injury (UBI) that rewired lumbar spinal neurocircuits. The left and right halves of the lumbar spinal cord were analysed in intact rats, and rats with left- or right-sided unilateral cortical injury, and left- or right-sided sham surgery. The findings were (i) lateralized expression of the RAS genes Ace, Agtr2 and Ren with higher levels on the left side; (ii) the asymmetry in coordination of the RAS gene expression that was stronger on the right side; (iii) the decay in coordination of co-expression of the RAS and neuroplasticity-related genes induced by the right-side but not left-side sham surgery and UBI; and (iv) the UBI-induced shift to negative regulatory interactions between RAS and neuroplasticity-related genes on the contralesional spinal side. Thus, the RAS genes may be a part of lateralized gene co-expression networks and have a role in a side-specific regulation of spinal neurocircuits.


Subject(s)
Brain Injuries , Renin , Analgesics, Opioid , Angiotensins , Animals , Rats , Spinal Cord
6.
Exp Brain Res ; 239(7): 2221-2232, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34021800

ABSTRACT

Traumatic brain injury and stroke result in hemiplegia, hemiparesis, and asymmetry in posture. The effects are mostly contralateral; however, ipsilesional deficits may also develop. We here examined whether ablation brain injury and controlled cortical impact (CCI), a rat model of clinical focal traumatic brain injury, both centered over the left or right sensorimotor cortex, induced hindlimb postural asymmetry (HL-PA) with contralesional or ipsilesional limb flexion. The contralesional hindlimb was flexed after left or right side ablation injury. In contrast, both the left and right CCI unexpectedly produced HL-PA with flexion on left side. The flexion persisted after complete spinal cord transection suggesting that CCI triggered neuroplastic processes in lumbar neural circuits enabling asymmetric muscle contraction. Left limb flexion was exhibited under pentobarbital anesthesia. However, under ketamine anesthesia, the body of the left and right CCI rats bent laterally in the coronal plane to the ipsilesional side suggesting that the left and right injury engaged mirror-symmetrical motor pathways. Thus, the effects of the left and right CCI on HL-PA were not mirror-symmetrical in contrast to those of the ablation brain injury, and to the left and right CCI produced body bending. Ipsilateral effects of the left CCI on HL-PA may be mediated by a lateralized motor pathway that is not affected by the left ablation injury. Alternatively, the left-side-specific neurohormonal mechanism that signals from injured brain to spinal cord may be activated by both the left and right CCI but not by ablation injury.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Spinal Cord Injuries , Animals , Functional Laterality , Hindlimb , Rats
7.
eNeuro ; 8(3)2021.
Article in English | MEDLINE | ID: mdl-33903183

ABSTRACT

Neuropeptides are implicated in control of lateralized processes in the brain. A unilateral brain injury (UBI) causes the contralesional sensorimotor deficits. To examine whether opioid neuropeptides mediate UBI induced asymmetric processes we compared effects of opioid antagonists on the contralesional and ipsilesional hindlimb responses to the left-sided and right-sided injury in rats. UBI induced hindlimb postural asymmetry (HL-PA) with the contralesional hindlimb flexion, and activated contralesional withdrawal reflex of extensor digitorum longus (EDL) evoked by electrical stimulation and recorded with EMG technique. No effects on the interossei (Int) and peroneaus longus (PL) were evident. The general opioid antagonist naloxone blocked postural effects, did not change EDL asymmetry while uncovered cryptic asymmetry in the PL and Int reflexes induced by UBI. Thus, the spinal opioid system may either mediate or counteract the injury effects. Strikingly, effects of selective opioid antagonists were the injury side-specific. The µ-antagonist ß-funaltrexamine (FNA) and κ-antagonist nor-binaltorphimine (BNI) reduced postural asymmetry after the right but not left UBI. In contrast, the δ-antagonist naltrindole (NTI) inhibited HL-PA after the left but not right-side brain injury. The opioid gene expression and opioid peptides were lateralized in the lumbar spinal cord, and coordination between expression of the opioid and neuroplasticity-related genes was impaired by UBI that together may underlie the side-specific effects of the antagonists. We suggest that mirror-symmetric neural circuits that mediate effects of left and right brain injury on the contralesional hindlimbs are differentially controlled by the lateralized opioid system.


Subject(s)
Brain Injuries , Neuropeptides , Animals , Naloxone/pharmacology , Narcotic Antagonists/pharmacology , Rats , Receptors, Opioid, mu , Spinal Cord
8.
Eur J Neurosci ; 53(11): 3621-3633, 2021 06.
Article in English | MEDLINE | ID: mdl-33884684

ABSTRACT

Effects of environmental factors may be transmitted to the following generation, and cause neuropsychiatric disorders including depression, anxiety, and posttraumatic stress disorder in the offspring. Enhanced synaptic plasticity induced by environmental enrichment may be also transmitted. We here test the hypothesis that the effects of brain injury in pregnant animals may produce neurological deficits in the offspring. Unilateral brain injury (UBI) by ablation of the hindlimb sensorimotor cortex in pregnant rats resulted in the development of hindlimb postural asymmetry (HL-PA), and impairment of balance and coordination in beam walking test in the offspring. The offspring of rats with the left UBI exhibited HL-PA before and after spinal cord transection with the contralesional (i.e., right) hindlimb flexion. The right UBI caused the offspring to develop HL-PA that however was cryptic and not-lateralized; it was evident only after spinalization, and was characterized by similar occurrence of the ipsi- and contralesional hindlimb flexion. The HL-PA persisted after spinalization suggesting that the asymmetry was encoded in lumbar spinal neurocircuits that control hindlimb muscles. Balance and coordination were affected by the right UBI but not the left UBI. Thus, the effects of a unilateral brain lesion in pregnant animals may be intergenerationally transmitted, and this process may depend on the side of brain injury. The results suggest the existence of left-right side-specific mechanisms that mediate transmission of the lateralized effects of brain trauma from mother to fetus.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Spinal Cord Injuries , Animals , Brain Injuries/etiology , Female , Hindlimb , Neuronal Plasticity , Pregnancy , Rats
9.
Brain Commun ; 2(2): fcaa208, 2020.
Article in English | MEDLINE | ID: mdl-33364602

ABSTRACT

Unilateral traumatic brain injury and stroke result in asymmetric postural and motor deficits including contralateral hemiplegia and hemiparesis. In animals, a localized unilateral brain injury recapitulates the human upper motor neuron syndrome in the formation of hindlimb postural asymmetry with contralesional limb flexion and the asymmetry of hindlimb nociceptive withdrawal reflexes. The current view is that these effects are developed due to aberrant activity of motor pathways that descend from the brain into the spinal cord. These pathways and their target spinal circuits may be regulated by local neurohormonal systems that may also mediate effects of brain injury. Here, we evaluate if a unilateral traumatic brain injury induces hindlimb postural asymmetry, a model of postural deficits, and if this asymmetry is spinally encoded and mediated by the endogenous opioid system in rats. A unilateral right-sided controlled cortical impact, a model of clinical focal traumatic brain injury was centred over the sensorimotor cortex and was observed to induce hindlimb postural asymmetry with contralateral limb flexion. The asymmetry persisted after complete spinal cord transection, implicating local neurocircuitry in the development of the deficits. Administration of the general opioid antagonist naloxone and µ-antagonist ß-funaltrexamine blocked the formation of postural asymmetry. Surprisingly, κ-antagonists nor-binaltorphimine and LY2444296 did not affect the asymmetry magnitude but reversed the flexion side; instead of contralesional (left) hindlimb flexion the ipsilesional (right) limb was flexed. The postural effects of the right-side cortical injury were mimicked in animals with intact brain via intrathecal administration of the opioid κ-agonist (2)-(trans)-3,4-Dichloro-N-methyl-N-[2-(1-pyrrolidiny)-cyclohexyl]benzeneacetamide that induced hindlimb postural asymmetry with left limb flexion. The δ-antagonist naltrindole produced no effect on the contralesional (left) flexion but inhibited the formation of the ipsilesional (right) limb flexion in brain-injured rats that were treated with κ-antagonist. The effects of the antagonists were evident before and after spinal cord transection. We concluded that the focal traumatic brain injury-induced postural asymmetry was encoded at the spinal level, and was blocked or its side was reversed by administration of opioid antagonists. The findings suggest that the balance in activity of the mirror symmetric spinal neural circuits regulating contraction of the left and right hindlimb muscles is controlled by different subtypes of opioid receptors; and that this equilibrium is impaired after unilateral brain trauma through side-specific opioid mechanism.

10.
Brain Commun ; 2(1): fcaa055, 2020.
Article in English | MEDLINE | ID: mdl-32954305

ABSTRACT

Mechanisms of motor deficits (e.g. hemiparesis and hemiplegia) secondary to stroke and traumatic brain injury remain poorly understood. In early animal studies, a unilateral lesion to the cerebellum produced postural asymmetry with ipsilateral hindlimb flexion that was retained after complete spinal cord transection. Here we demonstrate that hindlimb postural asymmetry in rats is induced by a unilateral injury of the hindlimb sensorimotor cortex, and characterize this phenomenon as a model of spinal neuroplasticity underlying asymmetric motor deficits. After cortical lesion, the asymmetry was developed due to the contralesional hindlimb flexion and persisted after decerebration and complete spinal cord transection. The asymmetry induced by the left-side brain injury was eliminated by bilateral lumbar dorsal rhizotomy, but surprisingly, the asymmetry after the right-side brain lesion was resistant to deafferentation. Pancuronium, a curare-mimetic muscle relaxant, abolished the asymmetry after the right-side lesion suggesting its dependence on the efferent drive. The contra- and ipsilesional hindlimbs displayed different musculo-articular resistance to stretch after the left but not right-side injury. The nociceptive withdrawal reflexes evoked by electrical stimulation and recorded with EMG technique were different between the left and right hindlimbs in the spinalized decerebrate rats. On this asymmetric background, a brain injury resulted in greater reflex activation on the contra- versus ipsilesional side; the difference between the limbs was higher after the right-side brain lesion. The unilateral brain injury modified expression of neuroplasticity genes analysed as readout of plastic changes, as well as robustly impaired coordination of their expression within and between the ipsi- and contralesional halves of lumbar spinal cord; the effects were more pronounced after the left side compared to the right-side injury. Our data suggest that changes in the hindlimb posture, resistance to stretch and nociceptive withdrawal reflexes are encoded by neuroplastic processes in lumbar spinal circuits induced by a unilateral brain injury. Two mechanisms, one dependent on and one independent of afferent input may mediate asymmetric hindlimb motor responses. The latter, deafferentation resistant mechanism may be based on sustained muscle contractions which often occur in patients with central lesions and which are not evoked by afferent stimulation. The unusual feature of these mechanisms is their lateralization in the spinal cord.

11.
Front Mol Neurosci ; 11: 215, 2018.
Article in English | MEDLINE | ID: mdl-29997475

ABSTRACT

Epilepsy is a group of neurological disorders commonly associated with the neuronal malfunction leading to generation of seizures. Recent reports point to a possible contribution of astrocytes into this pathology. We used the lithium-pilocarpine model of status epilepticus (SE) in rats to monitor changes in astrocytes. Experiments were performed in acute hippocampal slices 2-4 weeks after SE induction. Nissl staining revealed significant neurodegeneration in the pyramidal cell layers of hippocampal CA1, CA3 areas, and the hilus, but not in the granular cell layer of the dentate gyrus. A significant increase in the density of astrocytes stained with an astrocyte-specific marker, sulforhodamine 101, was observed in CA1 stratum (str.) radiatum. Astrocytes in this area were also whole-cell loaded with a morphological tracer, Alexa Fluor 594, for two-photon excitation imaging. Sholl analyses showed no changes in the size of the astrocytic domain or in the number of primary astrocytic branches, but a significant reduction in the number of distal branches that are resolved with diffraction-limited light microscopy (and are thought to contain Ca2+ stores, such as mitochondria and endoplasmic reticulum). The atrophy of astrocytic branches correlated with the reduced size, but not overall frequency of Ca2+ events. The volume tissue fraction of nanoscopic (beyond the diffraction limit) astrocytic leaflets showed no difference between control and SE animals. The results of spatial entropy-complexity spectrum analysis were also consistent with changes in ratio of astrocytic branches vs. leaflets. In addition, we observed uncoupling of astrocytes through the gap-junctions, which was suggested as a mechanism for reduced K+ buffering. However, no significant difference in time-course of synaptically induced K+ currents in patch-clamped astrocytes argued against possible alterations in K+ clearance by astrocytes. The magnitude of long-term-potentiation (LTP) was reduced after SE. Exogenous D-serine, a co-agonist of NMDA receptors, has rescued the initial phase of LTP. This suggests that the reduced Ca2+-dependent release of D-serine by astrocytes impairs initiation of synaptic plasticity. However, it does not explain the failure of LTP maintenance which may be responsible for cognitive decline associated with epilepsy.

12.
Brain Res Bull ; 136: 37-43, 2018 01.
Article in English | MEDLINE | ID: mdl-28890284

ABSTRACT

Astrocytes are involved in maintenance of synaptic microenvironment by glutamate uptake and K+ clearance. These processes are associated with net charge transfer across the membrane and therefore can be recorded as glutamate transporter (IGluT) and K+ (IK) currents. It has been previously shown that the blockade of IK with BaCl2 enhances the IGluT. Here we show that activity-dependent facilitation (5 stimuli at 50Hz) of IGluT was not significantly different in BaCl2 compared to facilitation of IGluT isolated by post-hoc subtraction of IK. Nevertheless, BaCl2 abolished the activity-dependent prolongation of τdecay, which was observed for IGluT isolated by post-hoc subtraction of IK. This finding suggests that activity-dependent accumulation of extracellular K+ ([K+]o) causes astrocytic depolarization, which is responsible for the increase in τdecay of IGluT. The blockade of inward rectifying K+ channels (Kir) with BaCl2 makes astrocytic membrane potential insensitive to [K+]o elevation and thus abolishes this increase. Blockade of IGluT with glutamate transporter blocker, DL-threo-ß-benzyloxyaspartic acid (TBOA) did not significantly affect the amplitude of IK but decreased its τdecay. However, activity dependent facilitations of both amplitude and τdecay of IK were larger in TBOA, than in the control conditions. We suggest that activity-dependent accumulation of extracellular glutamate can enhance release of K+. Thus activity-dependent changes in [K+]o can affect glutamate dwell-time in the synaptic cleft, and vice versa, extracellular glutamate accumulation can affect [K+]o time-course. Our finding is important for understanding of the astrocytic mechanisms in glutamate excitotoxicity and in diseases related to disruption of K+ homeostasis (e.g. stroke, migraine, and epilepsy).


Subject(s)
Astrocytes/metabolism , Hippocampus/metabolism , Membrane Transport Proteins/metabolism , Potassium/metabolism , Animals , Astrocytes/drug effects , Cations, Monovalent/metabolism , Electric Stimulation , Extracellular Space/metabolism , Glutamic Acid/metabolism , Hippocampus/drug effects , Membrane Potentials/drug effects , Membrane Potentials/physiology , Patch-Clamp Techniques , Rats, Sprague-Dawley , Synapses/metabolism , Synaptic Transmission/physiology , Tissue Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...