Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 334, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172103

ABSTRACT

Results of an experiment named "Test" on survival and variability of microorganisms in open space near the International Space Station are presented. It was found after two-years exposure, spore-forming bacteria of the species Bacillus subtilis, fungi of the species Aureobasidium pullulans and archaea of the species Methanosarcina mazei S-6T, deposited on cotton wool, are able to survive, and their numbers decreased equally, regardless of whether the microorganisms belong to different taxonomic groups. The main factors for the long-term survival could be the result of their dehydration and partial lyophilization in the vacuum of near-Earth space. For the first time, after being in outer space, cyst-like cells of the archaea strain M. mazei S-6T and a 14-day delay in their growth were detected when cultured on a nutrient medium compared to the ground-based control strain. In 30% of fungi species strains A. pullulans, isolated after a two-year stay in outer space, the resistance to γ-radiation increased compared to the control strain. It was found that the reaction to the action of various concentrations of hydrogen peroxide and 1% chlorine in the surviving strains of the fungus A. pullulans on the ISS is less pronounced than in the control strain.


Subject(s)
Space Flight , Extraterrestrial Environment , Bacteria , Archaea , Fungi
2.
BMC Syst Biol ; 13(Suppl 1): 17, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30836973

ABSTRACT

BACKGROUND: The strategy of adaptation of the human body in microgravity is largely associated with the plasticity of cardiovascular system regulatory mechanisms. During long-term space flights the changes in the stroke volume of the heart are observed, the heart rate decreases, the phase structure of cardiac cycle is readjusted The purpose of this work was to clarify urine proteome changes associated with the initial condition of the heart rate autonomic regulation mechanisms in cosmonauts who have participated in long space missions. Urine proteome of each cosmonaut was analyzed before and after space flight, depending on the initial parameters characterizing the regulatory mechanisms of the cardiovascular system. RESULTS: The proteins cadherin-13, mucin-1, alpha-1 of collagen subunit type VI (COL6A1), hemisentin-1, semenogelin-2, SH3 domain-binding protein, transthyretin and serine proteases inhibitors realize a homeostatic role in individuals with different initial type of the cardiovascular system regulation. The role of significantly changed urine proteins in the cardiovascular homeostasis maintenance is associated with complex processes of atherogenesis, neoangiogenesis, activation of calcium channels, changes in cell adhesion and transmembrane properties, changes in extracellular matrix, participation in protection from oxidative stress and leveling the effects of hypoxia. Therefore, the concentrations of these proteins significantly differ between groups with dominant parasympathetic and sympathetic influences. CONCLUSION: The space flight induced urine proteome changes are significantly different in the groups identified by heart rate autonomic regulation peculiarities before space flight. All these proteins regulate the associated biological processes which affect the stiffness of the vascular wall, blood pressure level, the severity of atherosclerotic changes, the rate and degree of age-related involution of elastin and fibulin, age-related increase in collagen stiffness, genetically determined features of elastin fibers. The increased vascular rigidity (including the aorta) and of myocardium may be regarded as a universal response to various extreme factors. Significant differences in the semi-quantitative analysis of signal proteins between groups with different types of autonomic regulation are explained by a common goal: to ensure optimal adaptation regardless of age and of the genetically determined type of responses to the extreme environmental factors effects.


Subject(s)
Astronauts , Autonomic Nervous System/physiology , Heart Rate , Proteome , Urinalysis , Adaptation, Physiological/physiology , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...