Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Fish Biol ; 101(1): 55-68, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35460078

ABSTRACT

To characterize the female reproductive biology of the endangered species Steindachneridion parahybae in captivity, the authors used the concentration of gonadal steroids and the oocyte development during the annual reproductive cycle (RC) and after artificial induced spawning (AIS) until 48 h. Three stages of gonadal maturation were identified, based on morphological and physiological features: early maturation or previtellogenic (PRV) oocyte, advanced maturation or vitellogenic (VTG) oocyte and regression (REG) or follicular atresia. They identified and characterized the following stages of germ cells: oogonia, perinucleolar and cortical alveoli, and VTG and atretic oocytes during RC. The oestradiol levels were higher in PRV than those in VTG and REG during the RC, whereas androgens showed higher levels of oestradiol in VTG than those in PRV and REG. The progestogen levels remained unchanged during the whole RC. The final oocyte maturation (FOM) was achieved after AIS and postovulatory follicles (POF) were identified. Plasma concentration of progestogens (17α,20ß-dihydroxy-pregnen-3-one and 17α-hydroxyprogesterone) increased considerably after AIS, remaining high up to 6 h after AIS, and progressively decreased over time after AIS. During RC, the lack of FOM and POFs reveals that captivity negatively impacts S. parahybae reproduction. Nonetheless, the VTG stage of oocytes, reached during RC, is suitable for ovulation induction with artificial hormone manipulation, enabling the reproduction of this species in captivity and being essential for the success of fish farming and/or fish conservation programmes (conservationist aquaculture).


Subject(s)
Catfishes , Animals , Estradiol , Female , Follicular Atresia , Oocytes , Reproduction
2.
Anat Rec (Hoboken) ; 298(9): 1644-58, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25989288

ABSTRACT

The aim of this study was to identify and characterize pituitary cells of Steindachneridion parahybae females in captivity, highlighting the possible relationship with reproductive disorders at this level, since this species shows oocyte final maturation, ovulation and spawning dysfunction in captivity. The localization and distribution of growth hormone (GH), prolactin (PRL), somatolactin (SL), ß-luteinizing hormone (ß-LH), and ß-follicle stimulating hormone (ß-FSH) immunoreactive (-ir) cells in the adenohypophysis was studied by immunohistochemical and Western blot methods. In addition, cellular morphometric analyses and semi-quantification of ir-cells optical density (OD) during the annual reproductive cycle and after artificial induced spawning (AIS) were performed. Results showed that the distribution and general localization of pituitary cell types were similar to that of other teleost species. However, the morphometrical study of adenohypophysial cells showed differences along the reproductive cycle and following AIS. In general, females at the vitellogenic stage presented greater OD values for GH, PRL and SL than at other maturation stages (previtellogenic and regression stages), probably indicating an increased cellular activity during this stage. Conversely, ß-LH OD did not vary during the annual reproductive cycle. After AIS, ß-LH, SL and GH ir-cells showed an increase in OD values suggesting a possible involvement on oocyte final maturation, ovulation and spawning or a feedback control on the brain-pituitary-gonads axis. Reproductive dysfunction in S. parahybae females in captivity may be due to alteration of the synthesis pathways of ß-LH. In addition, GH family of hormones could modulate associated mechanisms that influence the reproductive status in this species.


Subject(s)
Catfishes/metabolism , Endangered Species , Fish Proteins/metabolism , Gonadotropins/metabolism , Growth Hormone/metabolism , Pituitary Gland/metabolism , Reproduction , Animals , Blotting, Western , Catfishes/classification , Catfishes/embryology , Embryo, Nonmammalian/metabolism , Female , Immunohistochemistry , Oocytes/metabolism , Pituitary Gland/cytology , Vitellogenesis
3.
Arch Environ Contam Toxicol ; 64(2): 281-90, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23124166

ABSTRACT

The potential threat to animal reproduction by contaminated freshwater systems posed the necessity to identify and develop bioindicators and biomarkers to be used for screening and evaluation of the effects in organisms. The main goal of this work was to determine, through histological analyses and changes in gonopodium morphology, whether a freshwater system polluted by anthropogenic activities-sewage, agricultural, and industrial-could cause alterations at the organ level. We also propose the live-bearing fish, Jenynsia multidentata, as a species suitable to study the effects of contaminated aquatic environments. We compared male fish sampled at two different stations in Suquía River basin (Córdoba, Argentina), both differing in degree of pollution, through liver and testis histology and gonopodial morphometric parameters. The water quality, based on the physicochemical characteristics of the studied stations, varied markedly with a decrease in water quality at the downstream site (station 2). At the highest polluted area, detrimental effects on liver and testis were evidenced on histological analysis. Male individuals from station 2 also presented noticeable structural changes of the anal fin, such as a straight gonopodium and abnormal tip area. The present results demonstrate that a freshwater system polluted by the impacts of anthropogenic activities has detrimental effects to J. multidentata. The alterations registered in individuals from the polluted station indicate an impairment of male reproductive performance and imply a risk for other live-bearing species as well as the entire biodiversity. We consider J. multidentata a sentinel species that is useful to evaluate the potential risk present in the studied basin not only to itself but to other species as well.


Subject(s)
Cyprinodontiformes/physiology , Environmental Monitoring/methods , Reproduction/drug effects , Rivers/chemistry , Water Pollutants, Chemical/toxicity , Animals , Argentina , Biomarkers/metabolism , Male , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...