Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Biobehav Rev ; 149: 105147, 2023 06.
Article in English | MEDLINE | ID: mdl-36990371

ABSTRACT

Adolescence is a period of biological, psychological and social changes, and the peak time for the emergence of mental health problems. During this life stage, brain plasticity including hippocampal neurogenesis is increased, which is crucial for cognitive functions and regulation of emotional responses. The hippocampus is especially susceptible to environmental and lifestyle influences, mediated by changes in physiological systems, resulting in enhanced brain plasticity but also an elevated risk for developing mental health problems. Indeed, adolescence is accompanied by increased activation of the maturing hypothalamic-pituitary-adrenal axis, sensitivity to metabolic changes due to increased nutritional needs and hormonal changes, and gut microbiota maturation. Importantly, dietary habits and levels of physical activity significantly impact these systems. In this review, the interactions between exercise and Western-style diets, which are high in fat and sugar, on adolescent stress susceptibility, metabolism and the gut microbiota are explored. We provide an overview of current knowledge on implications of these interactions for hippocampal function and adolescent mental health, and speculate on potential mechanisms which require further investigation.


Subject(s)
Hypothalamo-Hypophyseal System , Mental Health , Humans , Adolescent , Pituitary-Adrenal System , Diet , Exercise
2.
J Physiol ; 599(2): 709-724, 2021 01.
Article in English | MEDLINE | ID: mdl-33296086

ABSTRACT

KEY POINTS: The zona incerta (ZI) and ventral tegmental area (VTA) are brain areas that are both implicated in feeding behaviour. The ZI projects to the VTA, although it has not yet been investigated whether this projection regulates feeding. We experimentally (in)activated the ZI to VTA projection by using dual viral vector technology, and studied the effects on feeding microstructure, the willingness to work for food, general activity and body temperature. Activity of the ZI to VTA projection promotes feeding by facilitating action initiation towards food, as reflected in meal frequency and the willingness to work for food reward, without affecting general activity or directly modulating body temperature. We show for the first time that activity of the ZI to VTA projection promotes feeding, which improves the understanding of the neurobiology of feeding behaviour and body weight regulation. ABSTRACT: Both the zona incerta (ZI) and the ventral tegmental area (VTA) have been implicated in feeding behaviour. The ZI provides prominent input to the VTA, although it has not yet been investigated whether this projection regulates feeding. Therefore, we investigated the role of ZI to VTA projection neurons in the regulation of several aspects of feeding behaviour. We determined the effects of (in)activation of ZI to VTA projection neurons on feeding microstructure, food-motivated behaviour under a progressive ratio schedule of reinforcement, locomotor activity and core body temperature. To activate or inactivate ZI neurons projecting to the VTA, we used a combination of canine adenovirus-2 in the VTA, as well as Cre-dependent designer receptors exclusively activated by designer drugs (DREADD) or tetanus toxin (TetTox) light chain in the ZI. TetTox-mediated inactivation of ZI to VTA projection neurons reduced food-motivated behaviour and feeding by reducing meal frequency. Conversely, DREADD-mediated chemogenetic activation of ZI to VTA projection neurons promoted food-motivated behaviour and feeding. (In)activation of ZI to VTA projection neurons did not affect locomotor activity or directly regulate core body temperature. Taken together, ZI neurons projecting to the VTA exert bidirectional control overfeeding behaviour. More specifically, activity of ZI to VTA projection neurons facilitate action initiation towards feeding, as reflected in both food-motivated behaviour and meal initiation, without affecting general activity.


Subject(s)
Ventral Tegmental Area , Zona Incerta , Feeding Behavior , Neurons , Reward
3.
Neurosci Biobehav Rev ; 108: 646-657, 2020 01.
Article in English | MEDLINE | ID: mdl-31794778

ABSTRACT

Obesity has a major impact on metabolic health thereby negatively affecting brain function and structure, however mechanisms involved are not entirely understood. The increasing prevalence of obesity is accompanied by a growing number of bariatric surgeries (BS). Weight loss after BS appears to improve cognitive function in patients. Therefore, unraveling mechanisms how BS influences brain function may be helpful to develop novel treatments or treatments in combination with BS preventing/inhibiting neurodegenerative disorders like Alzheimer's disease. This review shows the relation between obesity and impaired circulation to and in the brain, brain atrophy, and decreased cognitive functioning. Weight loss seems to recover some of these brain abnormalities as greater white matter and gray matter integrity, functional brain changes and increased cognitive functioning is seen after BS. This relation of body weight and the brain is partly mediated by changes in adipokines, gut hormones and gut microbiota. However, the exact underlying mechanisms remain unknown and further research should be performed.


Subject(s)
Bariatric Surgery , Brain Diseases , Cognitive Dysfunction , Obesity/complications , Obesity/surgery , Brain Diseases/metabolism , Brain Diseases/pathology , Brain Diseases/physiopathology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/therapy , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...