Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Mol Sci ; 24(19)2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37834320

ABSTRACT

Spinal muscular atrophy (SMA) linked to 5q is a recessive motor neuron disease characterized by progressive and diffuse weakness and muscular atrophy. SMA is the most common neurodegenerative disease in childhood with an incidence of approximately 1 in 6000-10,000 live births, being long considered a leading cause of hereditary mortality in infancy, worldwide. The classification of SMA is based on the natural history of the disease, with a wide clinical spectrum of onset and severity. We are currently in a new therapeutic era, that, thanks to the widespread use of the newly approved disease-modifying therapies and the possibility of an early administration, should lead to a deep change in the clinical scenario and, thus, in the history of SMA. With the aim to achieve a new view of SMA, in this review we consider different aspects of this neuromuscular disease: the historical perspective, the clinical features, the diagnostic process, the psychological outcome, innovation in treatments and therapies, the possibility of an early identification of affected infants in the pre-symptomatic phase through newborn screening programs.


Subject(s)
Muscular Atrophy, Spinal , Neurodegenerative Diseases , Infant, Newborn , Infant , Humans , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/therapy , Neonatal Screening , Incidence
2.
Int J Mol Sci ; 24(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36768893

ABSTRACT

The human circadian system has a period of approximately 24 h and studies on the consequences of "chornodisruption" have greatly expanded. Lifestyle and environmental factors of modern societies (i.e., artificial lighting, jetlag, shift work, and around-the-clock access to energy-dense food) can induce disruptions of the circadian system and thereby adversely affect individual health. Growing evidence demonstrates a complex reciprocal relationship between metabolism and the circadian system, in which perturbations in one system affect the other one. From a nutritional genomics perspective, genetic variants in clock genes can both influence metabolic health and modify the individual response to diet. Moreover, an interplay between the circadian rhythm, gut microbiome, and epigenome has been demonstrated, with the diet in turn able to modulate this complex link suggesting a remarkable plasticity of the underlying mechanisms. In this view, the study of the impact of the timing of eating by matching elements from nutritional research with chrono-biology, that is, chrono-nutrition, could have significant implications for personalized nutrition in terms of reducing the prevalence and burden of chronic diseases. This review provides an overview of the current evidence on the interactions between the circadian system and nutrition, highlighting how this link could in turn influence the epigenome and microbiome. In addition, possible nutritional strategies to manage circadian-aligned feeding are suggested.


Subject(s)
Circadian Clocks , Circadian Rhythm , Humans , Circadian Rhythm/genetics , Nutritional Status , Diet , Life Style , Nutrigenomics , Circadian Clocks/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...