Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 11(6)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35741372

ABSTRACT

Background: The aim of this study was to verify the reproducibility of a resistance training protocol in the bench press (BP) exercise, based on traditional recommendations, analysing the effect of the muscle fatigue of each set and of the whole exercise protocol. Methods: In this cross-sectional study, thirty male physical education students were divided into three groups according to their relative strength ratio (RSR), and they performed a 1RM BP test (T1). In the second session (T2), which was one week after T1, the participants performed a BP exercise protocol of three sets with the maximum number of repetitions (MNR) possible to muscle failure, using a relative load corresponding to 70% 1RM determined through the mean propulsive velocity (MPV) obtained from the individual load−velocity relationship, with 2 min rests between sets. Two weeks later, a third session (T3) identical to the second session (T2) was performed. The MPV of each repetition of each set and the blood lactate level after each set were calculated, and mechanical fatigue was quantified through the velocity loss percentage of the set (% loss MPV) and in a pre-post exercise test with an individual load that could be lifted at ~1 m·s−1 of MPV. Results: The number of repetitions performed in each set was significantly different (MNR for the total group of participants: set 1 = 12.50 ± 2.19 repetitions, set 2 = 6.06 ± 1.98 repetitions and set 3 = 4.20 ± 1.99 repetitions), showing high variation coefficients in each of the sets and between groups according to RSR. There were significant differences also in MPVrep Best (set 1 = 0.62 ± 0.10 m·s−1, set 2 = 0.42 ± 0.07 m·s−1, set 3 = 0.36 ± 0.10 m·s−1), which significantly reduced the % loss MPV of all sets (set 1 = 77.4%, set 2 = 64%, set 3 = 54.2%). The lactate levels increased significantly (p < 0.05) (set 1 = 4.9 mmo·L−1, set 2 = 6 mmo·L−1, set 3 = 6.5 mmo·L−1), and MPV loss at 1 m·s−1 after performing the three sets was 36% in T2 and 34% in T3, with acceptable intrasubject variability (MPV at 1 m·s−1 pre-exercise: SEM ≤ 0.09 m·s−1, CV = 9.8%; MPV at 1 m·s−1 post-exercise: SEM ≤ 0.07 m·s−1, CV = 11.7%). Conclusions: These exercise propositions are difficult to reproduce and apply. Moreover, the number of repetitions performed in each set was significantly different, which makes it difficult to define and control the intensity of the exercise. Lastly, the fatigue generated in each set could have an individual response depending on the capacity of each subject to recover from the preceding maximum effort.

2.
Biology (Basel) ; 11(2)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35205202

ABSTRACT

Background: The aim of the study was to analyze the use of variables such as % of one-repetition maximum (1RM) and number of maximal repetitions (xRM) with execution velocity to define and control the intensity of resistance training in bench press exercise. Hence, exercise professionals will achieve better control of training through a greater understanding of its variables. Methods: In this cross-sectional study, fifty male physical education students were divided into four groups according to their relative strength ratio (RSR) and performed a 1RM bench press test (T1). In the second test, participants performed repetitions to exhaustion (T2), using a relative load corresponding to 70% 1RM determined through the mean propulsive velocity (MPV) obtained from the individual load-velocity relationship. This same test was repeated a week later (T3). Tests were monitored according to the MPV of each repetition and blood lactate values (LACT). Results: Regarding MPV, the best (fastest) repetition of the set (MPVrep Best) values were similar between groups (0.62 m·s-1-0.64 m·s-1), with significant differences in relation to the high RSR group (p < 0.001). The average maximum number of repetitions (MNR) was 12.38 ± 2.51, with no significant differences between the RSR groups. Nonetheless, significant variation existed between groups with regards to MNR (CV: 13-29%), with greater variability in the group corresponding to the lowest RSR values (CV: 29%). The loss of velocity in the MNR test in the different groups was similar (p > 0.05). Average LACT values (5.72 mmol·L-1) showed significant differences between the Medium RSR and Very Low RSR groups. No significant differences were found (p > 0.05) between T2 and T3 with regards to MNR, MPVrep Best, or MPVrep Last, with little variability seen between participants. Conclusions: The use of variables such as the 1RM, estimated using an absolute load value, or an MNR do not allow an adequate degree of precision to prescribe and control the relative intensity of resistance training. Besides, execution velocity control can offer an adequate alternative to guarantee an accurate prescription of intensity with regard to resistance training.

SELECTION OF CITATIONS
SEARCH DETAIL
...