Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 15132, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32934335

ABSTRACT

Enamel demineralisation can occur as a side effect during orthodontic treatment with fixed appliances. This study aimed to evaluate the efficacy of the self-assembling peptide P11-4 for remineralisation combined with fluorides, compared to application of fluoride varnish alone. De- and remineralisation was assessed by Quantitative light-induced fluorescence (QLF). Orthodontic brackets were bonded on 108 human enamel samples and white spot lesions were created. The samples were allocated randomly into three groups: Group I received no treatment, group II had a single application of fluoride varnish (22,600 ppm), and group III was treated with P11-4 following a single application of fluoride varnish. Quantitative light-induced fluorescence (QLF) measurements were performed at baseline, after demineralisation and after storage in remineralisation solution for 7 and 30 days. Non-parametric tests (Kruskal-Wallis test and Friedman test) were used for further analysis. After demineralisation, all samples showed a median ΔF -9.38% ± 2.79. After 30 days median ΔF values were as followed: group I = -9.04% ± 2.51, group II = -7.89 ± 2.07, group III = -6.08% ± 2.79). The median ΔF values differed significantly between all groups at all investigation times (p < 0.00001). Application of P11-4 with fluoride varnish was superior to the use of fluorides alone for remineralisation of enamel adjacent to brackets.


Subject(s)
Cariostatic Agents/administration & dosage , Dental Caries/drug therapy , Fluorides, Topical/administration & dosage , Orthodontic Brackets/adverse effects , Peptide Fragments/administration & dosage , Tooth Demineralization/prevention & control , Tooth Remineralization/methods , Humans , Tooth Demineralization/etiology
2.
Article in English | MEDLINE | ID: mdl-2440823

ABSTRACT

After treatment of Chinese hamster ovary (CHO) cells with very low concentrations of thiopyronine (TP; 1 microgram/ml) and visible light, a delay in growth of cell cultures (prolongation of the lag phase] was observed. The lengthened lag phase, however, was followed by normal growth of the cells. The length of the lag period is dependent on the irradiation dose applied. A similar effect on DNA and RNA synthesis could be seen after photodynamic treatment with TP in CHO cells: the maxima of RNA and DNA synthesis occur later but are not significantly reduced after treatment with low concentrations of TP and irradiation with visible light. This result is further evidence that the photodynamic effect with TP does not involve attack on nuclear DNA in eukaryotic cells.


Subject(s)
Cell Division/drug effects , DNA/biosynthesis , Light , Pyronine/pharmacology , RNA/biosynthesis , Xanthenes/pharmacology , Animals , Cell Division/radiation effects , Cell Line , Cricetinae , In Vitro Techniques , Pyronine/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL
...