Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
eNeuro ; 10(5)2023 05.
Article in English | MEDLINE | ID: mdl-37156611

ABSTRACT

Although casual drinkers are a majority of the alcohol drinking population, understanding of the long-term effects of chronic exposure to lower levels of alcohol is limited. Chronic exposure to lower doses of ethanol may facilitate the development of alcohol use disorders, potentially because of ethanol effects on reward learning and motivation. Indeed, our previously published findings showed that chronic low-dose ethanol exposure enhanced motivation for sucrose in male, but not female, mice. As the ventral hippocampus (vHPC) is sensitive to disruption by higher doses of chronic ethanol and tracks reward-related information, we hypothesized that this region is impacted by low-dose ethanol and, further, that manipulating vHPC activity would alter reward motivation. In vivo electrophysiological recordings of vHPC population neural activity during progressive ratio testing revealed that vHPC activity was suppressed in the period immediately after reward seeking (lever press) in ethanol-naive controls, whereas suppression of vHPC activity anticipated reward seeking in ethanol-exposed mice. In both ethanol-naive and exposed mice, vHPC activity was suppressed before a reward magazine entry. Temporally selective inhibition of vHPC using optogenetics increased motivation for sucrose in ethanol-naive controls, but not in ethanol-exposed mice. Further, regardless of exposure history, vHPC inhibition promoted checking of the reward magazine, indicating a role for vHPC in reward tracking. There was no effect of chemogenetic inhibition of the vHPC either during training or testing on sucrose reward motivation. These results reveal novel ethanol-induced alterations in vHPC neural activity that shift how vHPC activity is able to regulate reward seeking.


Subject(s)
Alcoholism , Ethanol , Mice , Animals , Male , Ethanol/pharmacology , Hippocampus/physiology , Reward , Sucrose/pharmacology , Conditioning, Operant
2.
Alcohol Clin Exp Res (Hoboken) ; 47(2): 382-394, 2023 02.
Article in English | MEDLINE | ID: mdl-36521835

ABSTRACT

BACKGROUND: Men and women with chronic pain report increased alcohol use and are more likely to be diagnosed with alcohol use disorder. The relationship between alcohol use and pain is bidirectional. Alcohol is used as an analgesic, but chronic alcohol intake increases pain. Sex differences in the relationship between chronic pain and alcohol are reported in the clinical and preclinical literature, but due to this bidirectional relationship, it is challenging to investigate the mechanisms that contribute to these differences. Thus, animal models of chronic pain are needed to characterize the efficacy of ethanol as an analgesic in males and females. The current experiments tested the hypothesis that ethanol differentially reduces pain behaviors in male and female mice in chronic neuropathic pain. METHODS: The spared nerve injury (SNI) model was used to investigate the analgesic effects of multiple doses of ethanol (0.5, 1, 2, g/kg i.p.) in male and female mice using von Frey and dynamic weight-bearing (DWB) assays. RESULTS: In both male and female mice, SNI led to robust allodynia and shifts in dynamic weight bearing. In male SNI mice, all three doses of ethanol fully reversed mechanical allodynia and shifts in DWB. In SNI females, only the highest dose (2.0 g/kg) was fully antiallodynic in the von Frey assay, while shifts in weight bearing were reversed at the 1.0 and 2.0 g/kg doses. The differences between male and females were not due to lower blood ethanol concentrations in female mice. CONCLUSION: These data indicate that while ethanol has antiallodynic and antinociceptive effects in male and female mice, the doses and time course of these effects are distinct. Studies investigating the relationship between pain and ethanol exposure in mice should consider sex as a key variable. These data also inform reported sex differences in rodent models of chronic pain and in chronic pain patients.


Subject(s)
Chronic Pain , Neuralgia , Female , Mice , Male , Animals , Hyperalgesia , Ethanol/pharmacology , Neuralgia/chemically induced , Analgesics , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...