Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 40(10): 5535-5544, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38407032

ABSTRACT

We report the synthesis and microscopic investigations of two chiral helical porphyrin supramolecular polymers with different coordinating metals that are expected to be capable of serving as synthetic macromolecular motors driven by thermal fluctuations. Furthermore, based on their microscopic images, we propose a stepwise process for the formation of higher-order structures. These porphyrins formed completely different association states, and this was reflected in the marked differences in the shapes of the supramolecular polymers. The Cu-TChOAlaCPP supramolecular polymers formed H-aggregate rods in diisopropyl ether, then grew into superhelices and then into ribbons. On the other hand, Zn-TChOAlaCPP supramolecular polymers formed aggregates based on van der Waals interactions in diethyl ether, then grew into fibers and then grew into multiple-helices and ribbons. In addition, we imaged the interaction between long and short chains of the Cu-TChOAlaCPP supramolecular polymer by fast-scanning atomic force microscopy, and we indicated the availability as a macromolecular motor driven by thermal fluctuations.

2.
Small ; : e2308050, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38072777

ABSTRACT

If ideal 2D polymer (2DP) macromolecules with small pores that are similar in size to gas molecules, large areas, small thickness, and excellent membrane-forming ability are synthesized, ultimate gas separation membranes would be obtained. However, as far it is known, such ideal well-characterized 2DP macromolecules are not isolated. In this study, an ideal 2DP macromolecule is synthesized by using the successive three reactions (Glaser coupling, SCAT reaction, and the introduction of octyl groups), in which the conjugated framework structure is maintained, from a fully conjugated 1D polymer. Because this exfoliated 2DP is soluble, the macromolecular structure can be fully characterized by 1 H-NMR, GPC, SEM, AFM, and its dense membrane with no defects can be fabricated by the solvent cast method. This soluble 2DP macromolecule has very small micropores (6.0 Å) inside the macromolecule, a large area (30 × 68 nm by SEM and AFM), high molecular weight (Mn = 2.80 × 105 by GPC), and a small thickness (4.4 Å by AFM). This membrane shows the highest oxygen permselectivity exceeding Robeson's upper line because of the high molecular sieving effect of the controlled small micropores.

SELECTION OF CITATIONS
SEARCH DETAIL
...