Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Oncol (Dordr) ; 46(1): 227-235, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36409438

ABSTRACT

BACKGROUND: T cell receptor fusion constructs (TRuC) consist of an antibody-based single chain variable fragment (scFv) fused to a T cell receptor chain (TCR) and allow recognition of cancer cells in an HLA-independent manner. Unlike chimeric antigen receptors (CAR), TRuC are integrated into the TCR complex resulting in a functional chimera with novel specificity, whilst retaining TCR signaling. To further enhance anti-tumor function, we expressed a PD-1-CD28 fusion receptor in TRuC T cells aiming to prevent tumor-induced immune suppression and T cell anergy. METHODS: The activation level of engineered T cells was investigated in co-culture experiments with tumor cells followed by quantification of released cytokines using ELISA. To study T cell-mediated tumor cell lysis in vitro, impedance-based real-time tumor cell killing and LDH release was measured. Finally, two xenograft mouse cancer models were employed to explore the therapeutic potential of engineered T cells. RESULTS: In co-culture assays, co-expression of PD-1-CD28 enhanced cytokine production of TRuC T cells. This effect was dependent on PD-L1 to PD-1-CD28 interactions, as blockade of PD-L1 amplified IFN-γ production in unmodified TRuC T cells to a greater level compared to TRuC-PD-1-CD28 T cells. In vivo, PD-1-CD28 co-expression supported the anti-tumor efficacy of TRuC T cells in two xenograft mouse cancer models. CONCLUSION: Together, these results demonstrate the therapeutic potential of PD-1-CD28 co-expression in TRuC T cells to prevent PD-L1-induced T cell hypofunction.


Subject(s)
Neoplasms , T-Lymphocytes , Humans , Mice , Animals , CD28 Antigens/metabolism , Programmed Cell Death 1 Receptor/metabolism , B7-H1 Antigen/metabolism , Mesothelin , Receptors, Antigen, T-Cell/metabolism , Cell Line, Tumor
2.
Methods Cell Biol ; 167: 99-122, 2022.
Article in English | MEDLINE | ID: mdl-35153001

ABSTRACT

Adoptive T cell therapy (ACT) is a therapeutic approach which employs genetically manipulated autologous T cells to target and eliminate a patient's malignancy. This novel therapeutic approach, when employing a chimeric antigen receptor (CAR) targeting CD19-expressing B cells, has shown remarkable success in treating acute B-cell lymphocytic leukemia. However, blood born malignancies represent only a fraction of cancers which affect patients. Unfortunately, the utilization of ACT to target solid malignancies has only shown marginal success rates. There are many known obstacles which hinder CAR T cell therapy in patients suffering from solid cancer, one notable obstacle is the effective trafficking of CAR T cells to the tumor site. With the rapid advancement of novel approaches and targets which may enhance CAR T cell infiltration into solid tumors, a standardized approach to assess and measure CAR T cell infiltration becomes imperative in order to compare these different approaches across platforms. Here we describe a flow cytometry method which enables the rapid detection and quantification of CAR T cells which have reached and entered the tumor mass following intravenous injection. Competence with single cell preparation and flow cytometry is required for optimal results.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Flow Cytometry , Humans , Immunotherapy, Adoptive/methods , Neoplasms/therapy , Receptors, Antigen, T-Cell , T-Lymphocytes
3.
Nat Biomed Eng ; 5(11): 1246-1260, 2021 11.
Article in English | MEDLINE | ID: mdl-34083764

ABSTRACT

The efficacy of adoptive cell therapy for solid tumours is hampered by the poor accumulation of the transferred T cells in tumour tissue. Here, we show that forced expression of C-X-C chemokine receptor type 6 (whose ligand is highly expressed by human and murine pancreatic cancer cells and tumour-infiltrating immune cells) in antigen-specific T cells enhanced the recognition and lysis of pancreatic cancer cells and the efficacy of adoptive cell therapy for pancreatic cancer. In mice with subcutaneous pancreatic tumours treated with T cells with either a transgenic T-cell receptor or a murine chimeric antigen receptor targeting the tumour-associated antigen epithelial cell adhesion molecule, and in mice with orthotopic pancreatic tumours or patient-derived xenografts treated with T cells expressing a chimeric antigen receptor targeting mesothelin, the T cells exhibited enhanced intratumoral accumulation, exerted sustained anti-tumoral activity and prolonged animal survival only when co-expressing C-X-C chemokine receptor type 6. Arming tumour-specific T cells with tumour-specific chemokine receptors may represent a promising strategy for the realization of adoptive cell therapy for solid tumours.


Subject(s)
Immunotherapy, Adoptive , Pancreatic Neoplasms , Receptors, CXCR6/metabolism , T-Lymphocytes , Animals , Cell- and Tissue-Based Therapy , Mesothelin , Mice , Pancreatic Neoplasms/therapy , Receptors, Chemokine/genetics
4.
Appl Microbiol Biotechnol ; 103(17): 7097-7110, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31324940

ABSTRACT

Significant resources are invested into efforts to improve the production yields of natural products from Actinobacteria, a well-recognized source of leads for several industries, most notably pharmaceutical one. Introduction of changes into genes for ribosomal protein S12 (rpsL) and/or 16S rRNA methylation (rsmG) is one of traditional approaches (referred to as ribosomal engineering) towards actinobacterial strain improvement. Yet, true potential of ribosome engineering remains unknown as it is currently coupled to empirical selection for aminoglycoside-resistance; rpsL mutations without such phenotypic expression could not be isolated. Here, we report a systematic and rational ribosome engineering approach to study the effect of a range of rpsL mutations on the production level of different biosynthetic gene clusters (BGC). The severe effect of diverse rpsL mutations together with deletion of rsmG engineered in Streptomyces albus has been revealed on the transcription level of several indigenous BGCs. The aforementioned mutations strongly impacted the transcription of indigenous BGCs, possibly because they alter the transcription of BGC-situated and global regulatory genes. The rsmG deletion with certain rpsL mutations can have a synergistic effect on the transcription level of indigenous BGCs. Our work thus provides the first streptomycete platform for rational engineering and study of virtually any nonlethal rpsL mutation. The tremendous effect of ribosome engineering on the transcription profile of the strains was reported for the first time. A library of described S. albus rpsL*/ΔrsmG strains represents a useful tool for overproducing known secondary metabolites and activating silent biosynthetic gene clusters in Actinobacteria.


Subject(s)
Bacterial Proteins/genetics , Biological Products/metabolism , Ribosomal Proteins/genetics , Streptomyces/genetics , Streptomyces/metabolism , Bacterial Proteins/metabolism , Gene Knockout Techniques , Metabolome , Methyltransferases/genetics , Multigene Family/genetics , Mutation , Ribosomal Proteins/metabolism , Transcription, Genetic , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...