Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Mater ; 6(6): 065006, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22101003

ABSTRACT

Although desirable for biomedical applications, soft degradable elastomers having balanced amphiphilic behaviour are rarely described in the literature. Indeed, mainly highly hydrophobic elastomers or very hydrophilic elastomers with hydrogel behaviours are found. In this work, we developed thermoset degradable elastomers based on the photo-cross-linking of poly(lactide)-poly(ethylene glycol)-poly(lactide) (PLA-PEG-PLA) triblock prepolymers. The originality of the proposed elastomers comes from the careful choice of the prepolymer amphiphilicity and from the possible modulation of their mechanical properties and degradation rates provided by cross-linkers of different nature. This is illustrated with the hydrophobic and rigid 2,4,6-triallyloxy-1,3,5-triazine compared to the hydrophilic and soft pentaerythritol triallyl ether. Thermal properties, mechanical properties, swelling behaviours, degradation rates and cytocompatibility have been evaluated. Results show that it is possible to generate a family of degradable elastomers covering a broad range of properties from a single biocompatible and biodegradable prepolymer.


Subject(s)
Absorbable Implants , Biocompatible Materials/chemistry , Elastomers/chemistry , Lactates/chemistry , Polyethylene Glycols/chemistry , Compressive Strength , Hardness , Materials Testing , Tensile Strength
2.
Langmuir ; 23(5): 2778-83, 2007 Feb 27.
Article in English | MEDLINE | ID: mdl-17243742

ABSTRACT

Ring-opening polymerization of D,L-lactide was carried out in the presence of monohydroxylated poly(ethylene glycol) (PEG) with Mn of 2000 and 5000, using zinc powder as catalyst. The resulting PEG-b-polylactide (PEG-PLA) diblocks with various ethylene oxide/lactyl (EO/LA) ratios were coupled with adipoyl chloride to yield PEG-PLA-PEG triblock copolymers. N-Dimethylaminopyridine (DMAP) was used as catalyst. The obtained PEG-PLA-PEG triblock copolymers were characterized by various analytical techniques such as IR, 1H NMR, size exclusion chromatography, X-ray diffraction, and differential scanning calorimetry. Data showed that all the copolymers were semicrystalline with the PEG-type crystalline structure, the crystallinity decreasing with increasing PLA block length. Bioresorbable hydrogels were prepared from the water-soluble triblock copolymers. Rheological measurements showed a gel-sol transition with increasing temperature and gelation was found to be thermoreversible. The copolymer solution behaves like a viscoelastic liquid above the gel point and like a viscoelastic solid below the gel point. The critical gelation concentration, the gel-sol transition temperature at a given concentration, and corresponding moduli depend on both the EO/LA ratio and the molecular weight of the copolymers. It is assumed that gelation results from interactions between PEG blocks at low temperatures and that these interactions are disrupted as the temperature is elevated. The shrinking of PEG blocks with increasing temperature seems to be in agreement with the variation of the gel-sol transition temperatures.


Subject(s)
Adipates/chemistry , Lactic Acid/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Chemistry, Physical/methods , Gels , Hydrogels/chemistry , Magnetic Resonance Spectroscopy , Models, Chemical , Powders , Spectrophotometry, Infrared , Temperature , X-Ray Diffraction , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...