Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Model ; 30(8): 240, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954155

ABSTRACT

CONTEXT: In this study, we evaluate the geometrical, absorption, optoelectronic, electronic, nonlinear optical (NLO) and thermodynamic properties of dibenzo[b,def]chrysene molecule derivatives by means of DFT and TD-DFT simulations. In view of the aim of producing new high-performance materials for non-linear optics (NLO) by doping test, two types of doping were used. We obtained six derivatives by doping with organic dopants (Nitro, amide and ticyanoethenyl) and mixed alkali metal (potassium) and organic dopants. Doping with organic dopants produced molecules A, B and C, respectively when substituting one hydrogen with nitro (NO2), amide (CONH2) and tricyanoethenyl (C5N3) groups, while mixed doping involved considering A, B and C and then substituting two hydrogens with two potassiums to obtain compounds D, E and F respectively. The negative values of the various interaction energies calculated for all the doped molecules show that they are all stable, but also that molecules C and F are the most stable in the case of both dopings. The gap energies calculated at the B3LYP level of theory are all below 3 eV, which means that all the molecules obtained are semiconductors. Better still, compounds C and F, with gap energies of 1.852 eV and 1.204 eV, respectively, corresponding to decreases of 35.67% and 58.18% in gap energy compared with the pristine molecule, are more reactive than the other doped molecules. Mixed doping is therefore a highly effective way of narrowing the energy gap and boosting the semiconducting character and reactivity of organic materials. Optoelectronic properties have also been improved, with refractive index values higher than those of the reference material, glass. This shows that our compounds could be used under very high electric field conditions of the order of 4.164 × 109 V.m-1 for C and 7.410 × 109 V.m-1 for F the highest values at the B3LYP level of theory. The maximum first-order hyperpolarizability values for both types of doping are obtained at the CAM-B3LYP level of theory by C: ß mol = 92.088 × 10-30esu and by F: ß mol = 129.449 × 10-30esu, and second-order values are also given by these same compounds. These values are higher than the reference value, which is urea, making our compounds potential candidates for high-performance NLO applications. In dynamic mode and at a frequency of 1064 nm, at the CAM-B3LYP level of theory, the highest dynamic hyperpolarizability coefficients were obtained by C and F. Hyper-Rayleigh scattering ß HRS , coefficients of the electro-optical Pockel effect (EOPE), EFISHG, third-order NLO-response degree four-wave mixing γ DFWM , quadratic nonlinear refractive index n2 were also calculated. The maximum values of n2 are obtained by C (6.13 × 10-20 m2/W) and F (6.60 × 10-20 m2/W), these values are 2.24 times higher than that of fused silica which is the reference for degenerate four-wave mixing so our molecules could also have applications in optoelectronics as wavelength converters, optical pulse modulators and optical switches. METHODS: Using the DFT method, we were able to determine the optimized and stable electronic structures of doped dibenzo[b,def]chrysene derivatives in the gas phase. We limited ourselves to using the proven B3LYP and CAMB3LYP levels of theory for calculating electronic properties, and non-linear optics with the 6-311G + + (d,p) basis set, which is a large basis set frequently used for these types of compound. Gaussian 09 software was used to run our calculations, and Gauss View 6.0.16 was used to visualize the output files. TD-DFT was also used to determine absorption properties at the B3LYP level of theory, using the same basis set.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123267, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37598450

ABSTRACT

Using Density Functional Theory (DFT) and time-dependent DFT (TD-DFT), we studied a compound widely used in daily life, namely: Methyl Methacrylate (MMA) monomer in its two stable isomers, cis-MMA and trans-MMA. The impact of conformation on the optical and electronic properties of MMA was highlighted. Structural parameters and thermodynamic properties were also assessed, and allowed to discuss the stability and reactivity of this compound. In addition, analysis of optoelectronic and electronic properties, global reactivity descriptors, natural bond orbital (NBO), and hole and electron reorganization energies was performed. The absorption and fluorescence properties, as well as the linear and nonlinear optical (NLO) properties of MMA were also investigated. The findings show that MMA is an insulator due to its wide band gap of 6.20 eV. It also exhibits good optoelectronic properties with high average electric field values of about 5.90 × 109 Vm-1 for cis-MMA and 5.42 × 109 Vm-1 for trans-MMA and high electric displacement values of at least 14.65 × 10-2 cm-2 for cis-MMA and 14.33 × 10-2 cm-2 for trans-MMA, suggesting a potential use for the design of piezoelectric and pyroelectric materials. In addition, trans-MMA has a dielectric constant close to that of good insulators; while cis-MMA exhibits a dielectric behaviour close to that of polymeric substances. Further, these materials are thermodynamically stable in its two conformations, with a good reactivity which can lead to good ability of polymerization. The analysis of the UV-vis spectra revealed that both forms of MMA absorb and emit mainly in the UV and that the Stokes shift of MMA is low, reducing its potential use in devices such as solar cells. At NLO level, MMA isomers exhibit weak optical properties such as second- and third-order optical susceptibility and cannot suitable for second and third harmonic generation; however, the conformation enhances second-order NLO response by at least 2 times when moving from cis- to trans-MMA, whereas the third-order response is almost unaffected. In addition, the conformation also affects the electronic and optoelectronic properties of MMA.

3.
Heliyon ; 8(11): e11491, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36411919

ABSTRACT

Hartree-Fock (HF) and Density Functional Theory (DFT) studies were conducted to assess the impact of potassium doping on the thermodynamic, optoelectronic, electronic and nonlinear optical properties and on the reactivity of photochromic polymers containing styrylquinoline fragments. Doping was carried out on the virgin monomer (M1) and on the derivative monomer (M2) with the nitro group NO2. Three doped monomers were investigated including, the monomer M3 obtained from M1 by substituting the H atom with a potassium, the monomer M4 by substituting two H atoms and the monomer M5 obtained from M2 by substituting the H atom. Findings proved that the use of potassium and the nitro group is an excellent process to improve the electronics properties of styrylquinoline virgin monomers. In fact, the energy gap decreases from 3.82 eV for M1 to 3.02 eV and to 2.92 eV for M3 and M4, respectively; while the decrease from 3.43 eV for M2 to 2.52 eV for M5 was observed, thus demonstrating the good semiconductor character of the obtained compounds with relevant applications in the manufacture of solar cells. Likewise, the fundamental gap decreases from 6.50 eV for M1 to 5.34 eV and to 4.62 eV for M3 and M4, respectively; while the decrease from 6.11 eV for M2 to 5.21 eV for M5 was observed; thus demonstrating an improvement in the reactivity of our doped monomers. In addition, potassium doping is an appropriate method to enhance optoelectronic properties of styrylquinoline virgin monomers. Thus, the refractive index of our doped monomers is greater than that of glass, which is a reference in optic and can be used under high electric fields of the order of 1.90 × 10 9 Vm-1 for monomer M4 up to 7.01 × 10 9 Vm-1 for M3 and to 10.89 × 10 9 Vm-1 for M5. Finally, the strong enhancement of the linear and nonlinear optical (NLO) properties that we observed leads us to conclude that these doped monomers can be appropriate candidates in devices requiring good NLO properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...