Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Heliyon ; 10(8): e29520, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38660278

ABSTRACT

This exploratory study aims to identify the volatile compounds in PC-Eo (Petroselinum crispum L. essential oil) and evaluate its antioxidant and antimicrobial properties in vitro. Molecular docking, drug-likeness prediction, and pharmacokinetics (absorption, distribution, metabolism, excretion, and toxicity-ADMET) were among the in silico simulations that were used to explain the biological properties observed in vitro. For PC-Eo's chemical screening, gas chromatography-mass spectrophotometry (GC-MS) was employed. The antioxidant activity of PC-Eo was evaluated using five in vitro complementary techniques, including 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) radical scavenging activity, ß-Carotene bleaching test (BCBT), reducing power (RP), and phosphomolybdenum assay (TAC). GC-MS analysis revealed that the primary components of PC-Eo are apiol (49.05 %), Myristicin (21.01 %), and 1-allyl-2,3,4,5-tetramethoxybenzene (13.14 %). The results of the in vitro antioxidant assays indicate that PC-Eo exhibits a superior antioxidant profile. The in vitro antimicrobial activity of PC-Eo was assessed against five strains, including 2 g-positive bacteria, 2 g-negative bacteria, and one fungal strain (Candida albicans). The disc-diffusion assay revealed significant antibacterial and antifungal activities against all strains, with zones of inhibition exceeding 15 mm. The microdilution test highlighted the lowest MIC and MBC values with gram-positive bacteria, ranging from 0.25 to 0.5 % v/v for MIC and 0.5-1.0 % v/v for MBC. For the fungal strain, MIC was recorded at 1.25 % and MFC at 2.5 % v/v. PC-Eo demonstrates bactericidal and fungicidal activity based on the MBC/MIC and MFC/MIC ratios. According to the ADMET study, the primary PC-Eo compounds have advantageous pharmacokinetic characteristics. These findings provide empirical support for the traditional uses of this plant and indicate its possible use as a natural remedy.

3.
Sci Rep ; 14(1): 8325, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38594363

ABSTRACT

Although giant fennel is recognized as a "superfood" rich in phytochemicals with antioxidant activity, research into the antibacterial properties of its fruits has been relatively limited, compared to studies involving the root and aerial parts of the plant. In this study, seven solvents-acetone, methanol, ethanol, ethyl acetate, chloroform, water, and hexane-were used to extract the chemical constituents of the fruit of giant fennel (Ferula communis), a species of flowering plant in the carrot family Apiaceae. Specific attributes of these extracts were investigated using in silico simulations and in vitro bioassays. High-performance liquid chromatography equipped with a diode-array detector (HPLC-DAD) identified 15 compounds in giant fennel extract, with p-coumaric acid, 3-hydroxybenzoic acid, sinapic acid, and syringic acid being dominant. Among the solvents tested, ethanol demonstrated superior antioxidant activity and phenolic and flavonoid contents. F. communis extracts showed advanced inhibition of gram-negative pathogens (Escherichia coli and Proteus mirabilis) and variable antifungal activity against tested strains. Molecular docking simulations assessed the antioxidative, antibacterial, and antifungal properties of F. communis, facilitating innovative therapeutic development through predicted compound-protein interactions. In conclusion, the results validate the ethnomedicinal use and potential of F. communis. This highlights its significance in natural product research and ethnopharmacology.


Subject(s)
Ferula , Fruit , Solvents/chemistry , Fruit/chemistry , Antifungal Agents/pharmacology , Plant Extracts/chemistry , Antioxidants/chemistry , Molecular Docking Simulation , Anti-Bacterial Agents/chemistry , Ethanol/analysis
4.
ACS Omega ; 9(8): 9236-9246, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38434823

ABSTRACT

Morocco is known for its high plant biodiversity, but many plants are poorly valorized. For this reason, this study aims to valorize the methanolic and aqueous extracts of Melitotus albus leaves by studying their antioxidant activity and toxicity. The extracts' antioxidant activity is assessed using the FRAP, DPPH, CAT, and ABTS methods. The chemical composition was determined using LC-MS analysis and evaluated using in silico studies. The results revealed that the total polyphenol content of the aqueous extract, 259.26 ± 7.79 (mg GAE/g), is higher than that of the methanolic extract, 131.41 ± 12.64 (mg GAE/g). The antioxidant activity by the methods of DPPH, ABTS, and phosphor molybdenum of aqueous extracts (0.087 ± 0.015, 0.014 ± 0.001 and 6.157 ± 1.050 mg eq vit C/g, respectively) is greater than that of methanolic extracts (0.107 ± 0.02, 0.167 ± 0.03, and 0.453 ± 0.014 mg eq vit C/g, respectively). The reducing power of iron (FRAP) shows that the methanolic extract has a greater reducing power than that of the aqueous extract with a low IC50 (0.011 ± 0.003 and 0.199 ± 0.016 mg/mL, respectively). The study of acute and subacute toxicity shows that the administration of the aqueous extract of M. albus at different doses increases the body weight of rats without modifying their general behavior. The M. albus extract had a 99.99% total phenolic content, as determined by LC-MS, consisting of 12 different components. The primary constituents of the extract are chlorogenic acid (43.68%), catechin/epicatechin (24.82%), quercetin-3-O-glucuronic acid (9.91%), naringin (7.64%), and p-hydroxybenzoic/salicylic acid (2.95%). The in-silico study showed that these compounds can passively permeate through the blood and have a beneficial effect on various organs of the body. Based on these results, M. albus can be used as a medicinal plant in phytotherapy, cosmetics, or as a dietary supplement. The bioactive compounds of these plants will require a lot of further effort in terms of isolation and characterization.

5.
Plants (Basel) ; 12(21)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37960139

ABSTRACT

The present study aimed to explore the phytochemical profile, and evaluate the antioxidant, antimicrobial, and insecticidal properties, of Moroccan Mentha longifolia L. essential oil (ML-EO) using in vitro and in silico assays. Noteworthily, as chromatography (GC-MS/MS) revealed that ML-EO is majorly composed of piperitenone oxide (53.43%), caryophyllene (20.02%), and (-) germacrene D (16.53%). It possesses excellent antioxidant activity with an IC50 of 1.49 ± 0.00 for DPPH and 0.051 ± 0.06 µg/mL for ABTS. Moreover, the RP and TAC activities were 0.80 ± 0.01 µg/mL and 315.532 ± 0.00 mg EAA/g, respectively. ML-EO exhibited a potent antimicrobial effect, specifically against Pseudomonas aeruginosa. It also exhibited strong antifungal ability, especially against Candida albicans. Regarding insecticidal activity, for ML-EO, a dose of 20 µL/mL produced a complete reduction in fecundity, fertility, and emergence of adult C. maculatus with mortality rates reaching 100%. In silico results showed that the antioxidant activity is mostly attributed to α-Cadinol, the antibacterial efficiency is attributed to piperitenone oxide, and antifungal capacity is related to cis-Muurola-4(15),5-diene and piperitenone oxide. Accordingly, ML-EO has high potential to be used as an alternative for preserving food and stored grain and protecting them against microbes and insect pests in the food and pharmaceutical sectors.

6.
Sci Rep ; 13(1): 18028, 2023 10 21.
Article in English | MEDLINE | ID: mdl-37865706

ABSTRACT

The current work attempts to explore the influence of three extraction solvents on phytochemical composition, content of polyphenols, antioxidant potential, and antibacterial capacity of hydroethanolic, acetonic, and aqueous extracts from Moroccan Mentha longifolia leaves. To achieve this goal, the chemical composition was identified using an HPLC-DAD examination. The contents of polyphenols were assessed, while the total antioxidant capacity (TAC), the DPPH test, and the reducing power test (RP) were utilized to determine antioxidant capacity. To assess the antibacterial activity, the microdilution technique was carried out to calculate the minimum inhibitory (MIC) and minimum bactericidal concentrations (MBC) of extracts against four nosocomial bacteria (Bacillus cereus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus). Additionally, the antibacterial and antioxidant activities of all tested extracts were examined in silico against the proteins NADPH oxidase and Bacillus cereus phospholipase C. Study reveals that M. longifolia extracts contain high phenolic and flavonoids. Additionally, the hydroethanolic extract contained the highest amounts of phenolic and flavonoid content, with values of 23.52 ± 0.14 mg Gallic acid equivalent/g dry weight and 17.62 ± 0.36 mg Quercetin Equivalent/g dry weight, respectively compared to the other two extracts. The same extract showed the best antioxidant capacity (IC50 = 39 µg/mL ± 0.00), and the higher RP (EC50 of 0.261 ± 0.00 mg/mL), compared to the acetonic and aqueous extract regarding these tests. Furthermore, the hydroethanolic and acetonic extracts expressed the highest TAC (74.40 ± 1.34, and 52.40 ± 0.20 mg EAA/g DW respectively), compared with the aqueous extract. Regarding antibacterial activity, the MIC value ranges between 1.17 and 12.50 mg/mL. The in-silico results showed that the antibacterial activity of all extracts is principally attributed to kaempferol and ferulic acid, while antioxidant capacity is attributed to ferulic acid.


Subject(s)
Mentha , Plant Extracts , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Solvents , Anti-Bacterial Agents/pharmacology , Polyphenols , Phytochemicals/pharmacology , Phenols/pharmacology , Flavonoids/pharmacology
7.
Medicina (Kaunas) ; 59(10)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37893532

ABSTRACT

Background and Objectives: Paracetamol overdose is a significant global issue due to its widespread use, which can lead to a lack of awareness regarding its potential side effects. Paracetamol can harm the liver, possibly resulting in liver failure. Conversely, this study employed extracts from Petroselinum crispum (PC), known for its rich content of bioactive compounds, with demonstrated antioxidant properties shown in previous research as well as protective effects against various diseases. The primary objective of this study was to investigate the potential protective effects of Petroselinum crispum on altered hematological and biochemical parameters in the blood of rats exposed to paracetamol. Materials and Methods: The study involved twenty Wistar rats divided into four groups. Different groups of male rats were administered PC extract at 200 mg/kg body weight daily for 15 days, along with a standard reference dose of paracetamol at 200 mg/kg. The study assessed hepatoprotection capacity by analyzing liver enzymes such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), bilirubin, albumin, and lipid profiles. Renal safety was evaluated through creatinine, urea, uric acid, lactate dehydrogenase (LDH), and total protein. Additionally, histopathological examinations of the liver and kidneys were conducted. Results: Following Paracetamol overdose, there were reductions in hemoglobin levels, serum total protein, albumin, and uric acid. Paracetamol overdose also elevated levels of several blood biomarkers, including creatinine, urea, nitrogen, ALT, AST, triglycerides, LDH activity, white blood cell count, and platelet count compared to the control group. However, using an ethanolic extract of Petroselinum crispum significantly mitigated the severity of these alterations and the extent of the effect correlated with the dose administered. Parsley extract helped prevent proteinuria and low hemoglobin, which are common side effects of Paracetamol. Conclusions: Therefore, parsley may hold promise in managing liver and kidney conditions-particularly in addressing proteinuria. Ultimately, these results may have implications for human health by potentially mitigating paracetamol-induced renal, hepatic, and hematological toxicity.


Subject(s)
Acetaminophen , Drug-Related Side Effects and Adverse Reactions , Humans , Rats , Male , Animals , Acetaminophen/toxicity , Petroselinum , Rats, Wistar , Uric Acid/pharmacology , Creatinine/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/metabolism , Liver , Proteinuria , Albumins , Urea , Hemoglobins
8.
Saudi Pharm J ; 31(8): 101701, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37576855

ABSTRACT

Ferula communis L. is thought to possess a wide range of therapeutic qualities. This plant's safety is critical regarding its potential uses as a medicine. Using the techniques outlined in the OECD recommendations, the present study aimed to assess the acute and subacute toxicity profiles of Ferula communis aqueous extract (FC-Ext) in mice. In the acute study, the FC-Ext was administered to adult male and female Swiss albino mice through oral and intraperitoneal routes at doses of 0-4 g/kg. The general behavioral effects, mortality rates, and latency of mortality were evaluated for a period of 14 days. For the sub-acute dose study, the FC-Ext was administered orally to adult mice at doses of 125, 250, and 500 mg/kg on a daily basis for 28 days. Body weight and selected biochemical and hematological parameters were measured, and histological examinations of the liver, kidney, and spleen were conducted to assess any signs of organ damage at the end of the treatment period. The results of the acute toxicity study demonstrated that the LD50 values for the oral and intraperitoneal administration of FC-Ext were 3.6 g/kg and 2.3 g/kg, respectively. In the subacute toxicity study of FC-Ext, no significant changes in body weight were observed. However, a substantial increase in the weights of the liver, kidney, and spleen was observed in male mice. The administration of FC-Ext to mice at doses higher than 250 mg/kg resulted in a decrease in white blood cells and platelets in both sexes and a reduction in red blood cells and mean corpuscular hemoglobin concentration in males and hemoglobin in females. No changes in biochemical parameters were observed. Microscopic examination of vital organs such as the liver, kidney, and spleen revealed no significant injuries. Based on the current results, the aqueous extract of Ferula communis has low toxicity. These findings provide important information about the toxicity profile of the traditional medicine plant Ferula communis.

9.
Plants (Basel) ; 12(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36904035

ABSTRACT

A statistical Simplex Lattice Mixture design was applied to develop a new formulation based on a combination of three plants grown in northern Morocco: Apium graveolens L., Coriandrum sativum L., and Petroselinum crispum M. We examined the extraction yield, total polyphenol content (TPC), 2'2-diphenyl-l-picrylhydrazyl (DPPH) radical scavenging activity, and total antioxidant capacity (TAC). The results of this screening study showed that C. sativum L. had the highest content of DPPH (53.22%) and TAC (37.46 ± 0.29 mg Eq AA/g DW) compared to the other two plants, while P. crispum M. showed the highest TPC (18.52 ± 0.32 mg Eq GA/g DW). Furthermore, the ANOVA analysis of the mixture design showed that all three responses (DPPH, TAC, and TPC) were statistically significant, with determination coefficients of 97%, 93%, and 91%, respectively, and fit the cubic model. Moreover, the diagnostic plots showed good correlation between the experimental and predicted values. Therefore, the best combination obtained under optimal conditions (P1 = 0.611, P2 = 0.289, P3 = 0.100) was characterized by DPPH, TAC, and TPC of 56.21%, 72.74 mg Eq AA/g DW, and 21.98 mg Eq GA/g DW, respectively. The results of this study reinforce the view of stimulating the effect of plant combinations to achieve better antioxidant activities, thus providing a better formulation using designs of mixtures for the food industry and in cosmetic and pharmaceutical applications. Moreover, our findings support the traditional use of the Apiaceae plant species in managing many disorders cited in the Moroccan pharmacopeia.

10.
Braz. J. Pharm. Sci. (Online) ; 59: e21088, 2023. tab, graf
Article in English | LILACS | ID: biblio-1439546

ABSTRACT

Abstract The present study was aimed at conducting phytochemical analysis and evaluating the in vitro antifungal and antioxidant activities of the essential oil obtained from the fruits of J. oxycedrus L. Hydro-distillation was used to extract the essential oil from the fruits of Juniper oxycedrus. The essential oil was analyzed using gas chromatography with a flame ionization detector (GC-FID) and gas chromatography coupled with mass spectrometry (GC/MS). The antioxidant activity of the essential oil against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals was determined in vitro using varying concentrations of the essential oil and vitamin C as a standard antioxidant compound. A disc diffusion test was employed to evaluate the antifungal activity of the essential oil against two test fungal strains, Penicillium citrinum, and Aspergillus niger. The results revealed that 49 constituents were identified in fruit oil, representing 91.56% of the total oil and the yield was 1.58%. Juniper fruit oil was characterized by having high contents of ß-pinene (42.04%), followed by limonene (15.45%), sabinene (9.52%), α-pinene (5.21%), (E)-caryophyllene (3.77%), ρ-cymene (1.56%), caryophyllene oxide (2.02%), and myrcene (1.02%). The radical scavenging activity (% inhibition) of the essential oil was highest (81.87± 2.83%) at a concentration of 200 µg/mL. The essential oil of J. oxycedrus exhibited antifungal activity against A. niger and P. citrinum with minimum inhibitory concentration values (MIC) ranging from 2.89 to 85.01 µl/mL. The findings of the study reveal that the antioxidant and antifungal properties of J. oxycedrus essential oil and their chemical composition are significantly correlated


Subject(s)
Oils, Volatile/analysis , Juniperus/adverse effects , Phytochemicals/analysis , Fruit/classification , Morocco/ethnology , Antioxidants/pharmacology , Mass Spectrometry/methods , In Vitro Techniques/methods , Microbial Sensitivity Tests/methods , Chromatography, Gas/methods , Antifungal Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...