Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 258(Pt 2): 129155, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38171440

ABSTRACT

Developing cost-effective, biocompatible scaffolds with nano-structured surface that truthfully replicate the physico-(bio)chemical and structural properties of bone tissue's extracellular matrix (ECM) is still challenging. In this regard, surface functionalization of natural scaffolds to enhance capability of mimicking 3D niches of the bone tissue has been suggested as a solution. In the current study, we aimed to investigate the potential of chitin-based cockroach wings (CW) as a natural scaffold for bone tissue engineering. To raise the osteogenic differentiation capacity of such a scaffold, a quercetin coating was also applied (hereafter this scaffold is referred as QCW). Moreover, the QCW scaffold exhibited effective antibacterial properties against gram-positive S. aureus bacteria. With respect to bone regeneration, the QCW scaffold optimally induced the differentiation of adipose-derived human mesenchymal stem cells (AD-hMSCs) into osteoblasts, as validated by mineralization assays, alkaline phosphatase (ALP) activity measurements, expression of pre-osteocyte marker genes, and immunocytochemical staining. Confirmation of the potent biocompatibility and physicochemical characteristics of the QCW scaffold through a series of in vitro and in vivo analysis revealed that surface modification had significant effect on multi-purpose features of obtained scaffold. Altogether, surface modification of QCW made it as an affordable bioinspired scaffold for bone tissue engineering.


Subject(s)
Cockroaches , Osteogenesis , Animals , Humans , Tissue Scaffolds/chemistry , Quercetin/pharmacology , Chitin/pharmacology , Staphylococcus aureus , Tissue Engineering/methods , Bone Regeneration , Cell Differentiation
2.
Int J Biol Macromol ; 242(Pt 2): 124857, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37187421

ABSTRACT

Developing inexpensive, biocompatible natural scaffolds that can support the differentiation and proliferation of stem cells has been recently emphasized by the research community to faster obtain the FDA approvals for regenerative medicine. In this regard, plant-derived cellulose materials are a novel class of sustainable scaffolding materials with high potentials for bone tissue engineering (BTE). However, low bioactivity of the plant-derived cellulose scaffolds restricts cell proliferation and cell differentiation. This limitation can be addressed though surface-functionalization of cellulose scaffolds with natural antioxidant polyphenols, e.g., grape seed proanthocyanidin (PCA)-rich extract (GSPE). Despite the various merits of GSPE as a natural antioxidant, its impact on the proliferation and adhesion of osteoblast precursor cells, and on their osteogenic differentiation is an as-yet unknown issue. Here, we investigated the effects of GSPE surface functionalization on the physicochemical properties of decellularized date (Phoenix dactyliferous) fruit inner layer (endocarp) (DE) scaffold. In this regard, various physiochemical characteristics of the DE-GSPE scaffold such as hydrophilicity, surface roughness, mechanical stiffness, porosity, and swelling, and biodegradation behavior were compared with those of the DE scaffold. Additionally, the impact of the GSPE treatment of the DE scaffold on the osteogenic response of human mesenchymal stem cells (hMSCs) was thoroughly studied. For this purpose, cellular activities including cell adhesion, calcium deposition and mineralization, alkaline phosphatase (ALP) activity, and expression levels of bone-related genes were monitored. Taken together, the GSPE treatment enhanced the physicochemical and biological properties of the DE-GSPE scaffold, thereby raising its potentials as a promising candidate for guided bone regeneration.


Subject(s)
Osteogenesis , Phoeniceae , Humans , Tissue Scaffolds/chemistry , Antioxidants/pharmacology , Bone Regeneration , Tissue Engineering , Cell Differentiation , Cellulose/pharmacology , Cell Proliferation
3.
Carbohydr Polym ; 252: 117219, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33183646

ABSTRACT

In this research, two groups of polyurethane (PU) nanocomposites were developed based on PCL500-PEGx-PCL500 tri-block polyols and cellulose nanowhisker (CNW), as a cross-linker and controller of microphase separation of blocks. The effect of PEGx block length on phase segregation and crystallization of blocks was evaluated. The impact of tuned crystallization and hard domain morphology on shape memory parameters was studied in detail. PU2000-0.25 % was selected as the optimum specimen with shape fixity and recovery of 100 %. CNW nanorods were found to act as a controlling agent of the microphase segregation, possibly through changing the spatial organization of hard segments from a 3D self-assembled to a shell-like structure. Three different cell lines (HepG2, HFF, and mesenchymal stem cells) were used to culture on the prepared 2D specimens, resulting in different behaviors. The newly synthesized biomaterials with different cellular responses presented a great potential for a variety of tissue engineering applications.


Subject(s)
Cellulose/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Polyurethanes/chemistry , Tissue Engineering , Tissue Scaffolds , Biocompatible Materials/chemistry , Cell Line , Humans , Nanocomposites/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...