Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Circ Res ; 109(5): 543-53, 2011 Aug 19.
Article in English | MEDLINE | ID: mdl-21719760

ABSTRACT

RATIONALE: Senescence of pulmonary artery smooth muscle cells (PA-SMCs) caused by telomere shortening or oxidative stress may contribute to pulmonary hypertension associated with chronic lung diseases. OBJECTIVE: To investigate whether cell senescence contributes to pulmonary vessel remodeling and pulmonary hypertension in chronic obstructive pulmonary disease (COPD). METHODS AND RESULTS: In 124 patients with COPD investigated by right heart catheterization, we found a negative correlation between leukocyte telomere length and pulmonary hypertension severity. In-depth investigations of lung vessels and derived cultured PA-SMCs showed greater severity of remodeling and increases in senescent p16-positive and p21-positive PA-SMCs and proliferating Ki67-stained cells in 14 patients with COPD compared to 13 age-matched and sex-matched control subjects who smoke. Cultured PA-SMCs from COPD patients displayed accelerated senescence, with fewer cell population doublings, an increased percentage of ß-galactosidase-positive cells, shorter telomeres, and higher p16 protein levels at an early cell passage compared to PA-SMCs from controls. Both in situ and in vitro PA-SMC senescence criteria correlated closely with the degree of pulmonary vessel wall hypertrophy. Because senescent PA-SMCs stained for p16 and p21 were virtually confined to the media near the Ki67-positive cells, which predominated in the neointima and hypertrophied media, we evaluated whether senescent cells affected normal PA-SMC functions. We found that senescent PA-SMCs stimulated the growth and migration of normal target PA-SMCs through the production and release of paracrine soluble and insoluble factors. CONCLUSION: PA-SMC senescence is an important contributor to the process of pulmonary vascular remodeling that underlies pulmonary hypertension in chronic lung disease.


Subject(s)
Cellular Senescence , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Pulmonary Artery/pathology , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/pathology , Aged , Cells, Cultured , Cellular Senescence/physiology , Female , Humans , Male , Middle Aged , Muscle, Smooth, Vascular/physiopathology , Myocytes, Smooth Muscle/physiology , Pulmonary Artery/physiopathology , Pulmonary Disease, Chronic Obstructive/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...