Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Med ; 82(5): 1859-1875, 2019 11.
Article in English | MEDLINE | ID: mdl-31199013

ABSTRACT

PURPOSE: To evaluate radiofrequency (RF) induced tissue heating around aneurysm clips during a 7T head MR examination and to determine the decoupling distance between multiple implanted clips. METHODS: A total of 120 RF exposure scenarios of clinical relevance were studied using specific absorption rate and temperature simulations. Variations between scenarios included 2 clips (18.8 and 51.5 mm length), 2 MR-operating modes, 2 head models, and 3 thermoregulation models. Furthermore, a conservative approach was developed to allow for safe scans of patients with aneurysm clips even if detailed information on the implanted clip is unknown. A dedicated simulation-based approach was applied to determine the decoupling distance between multiple implanted clips. RESULTS: For all 60 clinical scenarios with the 18.8-mm-long clip, the absolute tissue temperature remained below regulatory limits. For 15 of 60 scenarios with the 51.5-mm-long clip, limits were slightly exceeded (less than 1°C). The conservative approach led to a maximum time-averaged input power of the RF coil of 3.3W. The corresponding B1+ is 1.32 µT. A decoupling distance of 35 mm allows the aneurysm clips to be treated as uncoupled from one other. CONCLUSION: Safe scanning conditions with respect to RF-induced heating can be applied for single or decoupled aneurysm clips in a 7T ultra-high field MRI setting. Multiple aneurysm clips separated by less than 35 mm need further investigations.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Surgical Instruments/adverse effects , Equipment Safety , Hot Temperature , Humans , Intracranial Aneurysm/surgery , Phantoms, Imaging , Prosthesis Design , Radio Waves
2.
Magn Reson Med ; 79(1): 568-581, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28266079

ABSTRACT

PURPOSE: To examine radiofrequency-induced tissue heating around intracranial aneurysm clips during a 7 Tesla (T) head MR examination. METHODS: Radiofrequency (RF), temperature simulations, and RF measurements were employed to investigate the effects of polarization and clip length on the electric field (E-field) and temperature. Heating in body models was studied using both a conservative approach and realistic exposure scenarios. RESULTS: Worst-case orientation was found for clips aligned parallel to the E-field polarization. Absolute tissue temperature remained below International Electrotechnical Commission regulatory limits for 44 of 50 clinical scenarios. No significant effect on heating was determined for clip lengths below 18.8 mm, and worst-case heating was found for clip length 51.5 mm. The conservative approach led to a maximum permissible E-field of 72 V/m corresponding to B1+ of 1.2 µT, and an accepted power of 4.6 W for the considered RF head coil instead of 38.5 W without clip. CONCLUSION: Safe scanning conditions with respect to RF-induced heating can be applied depending on the information about the clip gained during screening interviews. However, force and torque measurements in the MR system shall be conducted to give a final statement on the MR safety of aneurysm clips at 7T. Magn Reson Med 79:568-581, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Hyperthermia, Induced , Intracranial Aneurysm/diagnostic imaging , Magnetic Resonance Imaging , Surgical Instruments , Computer Simulation , Hot Temperature , Humans , Infant , Phantoms, Imaging , Radio Waves , Stress, Mechanical , Torque
3.
MAGMA ; 28(6): 577-90, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26410044

ABSTRACT

OBJECT: Over the last decade, the number of clinical MRI studies at 7 T has increased dramatically. Since only limited information about the safety of implants/tattoos is available at 7 T, many centers either conservatively exclude all subjects with implants/tattoos or have started to perform dedicated tests for selected implants. This work presents our experience in imaging volunteers with implants/tattoos at 7 T over the last seven and a half years. MATERIALS AND METHODS: 1796 questionnaires were analyzed retrospectively to identify subjects with implants/tattoos imaged at 7 T. For a total of 230 subjects, the type of local transmit/receive RF coil used for examination, imaging sequences, acquisition time, and the type of implants/tattoos and their location with respect to the field of view were documented. These subjects had undergone examination after careful consideration by an internal safety panel consisting of three experts in MR safety and physics. RESULTS: None of the subjects reported sensations of heat or force before, during, or after the examination. None expressed any discomfort related to implants/tattoos. Artifacts were reported in 52% of subjects with dental implants; all artifacts were restricted to the mouth area and did not affect image quality in the brain parenchyma. CONCLUSION: Our initial experience at 7 T indicates that a strict rejection of subjects with tattoos and/or implants is not justified. Imaging can be conditionally performed in carefully selected subjects after collection of substantial safety information and evaluation of the detailed exposure scenario (RF coil/type and position of implant). Among the assessed subjects with tattoos, no side effects from the exposure to 7 T MRI were reported.


Subject(s)
Magnetic Resonance Imaging/methods , Prostheses and Implants , Tattooing , Artifacts , Contraindications , Equipment Safety , Female , Healthy Volunteers , Humans , Male , Patient Safety , Radio Waves , Retrospective Studies , Surveys and Questionnaires
4.
Med Phys ; 40(4): 042302, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23556915

ABSTRACT

PURPOSE: The increasing number of clinically oriented MRI studies at 7 T motivates the safety assessment of implants, since many 7 T research sites conservatively exclude all subjects with metallic implants, regardless of type or location. The purpose of this study was to investigate potential RF-induced heating during a 7 T MRI scan using a self-built transmit/receive RF coil in patients with implants used for refixation of the bone flap after craniotomy. Going beyond standard ASTM safety tests, a comprehensive test procedure for safety assessments at 7 T is presented which takes into account the more complex coupling of the electromagnetic field with the human body and the implant as well as polarization effects. METHODS: The safety assessment consisted of three main investigations using (1) numerical simulations in simplified models, (2) electric and magnetic field measurements and validation procedures in homogeneous phantoms, and (3) analysis of exposure scenarios in a heterogeneous human body model including thermal simulations. Finally, 7 T in vivo images show the degree of image artifact around the implants. RESULTS: The simulations showed that the field distortions remain localized within the direct vicinity of the implants. A parallel E-field polarization was found to be the most relevant component in creating local SAR deviations, resulting in a 10% increase in 10-g-averaged SAR and 53% in 1-g-averaged SAR. Using a heterogeneous human head model, the implants caused field distortions and SAR elevations in the numerical simulations which were distinctly lower than the maximum local SAR value caused by the RF coil alone. Also, the position of the maximum 10-g-averaged SAR remained unchanged by the presence of the implants. Similarly, the maximum absolute local temperature remained below 39 °C in the thermal simulations. Only minor artifacts from the implants were observed in the in vivo images that would not likely affect the diagnostic image quality in patients. CONCLUSIONS: The findings suggested no evidence for noteworthy RF-related heating in humans after craniotomy using the described implants and for the particular RF coil that was used in this study. Here, identical transmit power restrictions apply with or without the implants. For other RF coils, the maximum permissible input power should be reduced by 10% until further simulations may indicate otherwise.


Subject(s)
Bone Plates , Internal Fixators , Magnetic Resonance Imaging , Models, Theoretical , Skull/radiation effects , Skull/surgery , Computer Simulation , Equipment Failure Analysis , Equipment Safety , Hot Temperature , Humans , Magnetic Fields , Prosthesis Design
SELECTION OF CITATIONS
SEARCH DETAIL
...