Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 144(13): 134702, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27059580

ABSTRACT

Density functional theory calculation was conducted to determine the optoelectronic properties of bismuth titanate sillenite (Bi12TiO20) and perovskite-like (Bi4Ti3O12) structures. The lattice parameters were experimentally obtained from Rietveld analysis. The density functional perturbation theory approach was used with the standard Perdew-Burke-Ernzerhof functional and screened Coulomb hybrid Heyd-Scuseria-Ernzerhof functional to investigate the electronic structure and absorption coefficient. Both compounds have good carrier transport properties, low effective hole and electron masses, high dielectric constant, and low exciton binding energy.

2.
Phys Chem Chem Phys ; 17(2): 1001-9, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25410936

ABSTRACT

Efficient photocatalytic hydrogen generation in a suspension system requires a sophisticated nano-device that combines a photon absorber with effective redox catalysts. This study demonstrates an innovative molecular linking strategy for fabricating photocatalytic materials that allow effective charge separation of excited carriers, followed by efficient hydrogen evolution. The method for the sequential replacement of ligands with appropriate molecules developed in this study tethers both quantum dots (QDs), as photosensitizers, and metal nanoparticles, as hydrogen evolution catalysts, to TiO2 surfaces in a controlled manner at the nano-level. Combining hydrophobic and hydrophilic interactions on the surface, CdSe-ZnS core-shell QDs and an Au-Pt alloy were attached to TiO2 without overlapping during the synthesis. The resultant nano-photocatalysts achieved substantially high-performance visible-light-driven photocatalysis for hydrogen evolution. All syntheses were conducted at room temperature and in ambient air, providing a promising route for fabricating visible-light-responsive photocatalysts.

3.
Phys Chem Chem Phys ; 16(22): 10762-9, 2014 Jun 14.
Article in English | MEDLINE | ID: mdl-24756170

ABSTRACT

A flux-assisted method was used to synthesize SnNb2O6 as a visible-light-responsive metal oxide photocatalyst. The role of flux was investigated in detail using different flux to reactant molar ratios (1 : 1, 3 : 1, 6 : 1, 10 : 1, and 14 : 1) and different reaction temperatures (300, 500, and 600 °C). The obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), the Brunauer-Emmett-Teller method (BET), and high resolution scanning transmission electron microscopy (HRTEM). Flux-assisted synthesis led to tin niobate particles of platelet morphology with smooth surfaces. The synthesized crystal showed a 2D anisotropic growth along the (600) plane as the flux ratio increased. The particles synthesized with a high reactant to flux ratio (1 : 10 or higher) exhibited slightly improved photocatalytic activity for hydrogen evolution from an aqueous methanol solution under visible radiation (λ > 420 nm). The photo-deposition of platinum and PbO2 was examined to gain a better understanding of electrons and hole migration pathways in these layered materials. The HR-STEM observation revealed that no preferential deposition of these nanoparticles was observed depending on the surface facets of SnNb2O6.

SELECTION OF CITATIONS
SEARCH DETAIL
...