Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(1): 545-558, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38222644

ABSTRACT

The effect of Ga-substitution on bismuth ferrite BiGaxFe1-xO3 (x = 0, 0.05, 0.10, 0.15, 0.20, and 0.25) properties was investigated, which was fabricated using a microemulsion route. X-ray diffraction analysis confirmed that specimens had a single-phase rhombohedral structure with space group R3̅c. The concentration of Ga had an impact on various properties such as structural parameters, crystalline size, porosity, and unit cell volume. The samples exhibited notable values for the dielectric constant, tangent loss, and dielectric loss in the low-frequency range, which declined as the frequency increased due to different polarizations. The increment in the AC conductivity was associated with rise in frequency. The P-E loops demonstrated that the samples became more resistive as the Ga concentration increased. The retentivity (Mr) and saturation magnetization (Ms) values reduced as the Ga content increased, although all samples had Hc values within the range for electromagnetic materials. The Ga-substitution had a synergistic effect on the electrochemical characteristics of BiGaxFe1-xO3, resulting in greater conductivity than that of undoped BiFeO3. These enhanced properties contributed to their higher photocatalytic activity in the degradation of crystal violet under visible light irradiation. The doped BiGaxFe1-xO3 exhibited 79% dye degradation after 90 min of illumination compared to 54% for pure BiFeO3. Recycling experiments confirmed the stability and reusability of the synthesized nanoparticles. The antibacterial activity of the samples was certified against various microbes, and the doped BiGaxFe1-xO3 showed promising activity. Thus, doped materials are good candidates for memories, dielectric resonators, and photovoltaics because of their high dielectric constant and AC conductivity, while their higher photocatalytic activity under visible light makes them promising photocatalysts for removing noxious and harmful effluents from wastewaters.

2.
Int J Biol Macromol ; 224: 1337-1355, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36309237

ABSTRACT

Dyes are emerging as harmful pollutants, which is one of major issues for the environmentalists and there is a urgent need for the removal of dyes from the effluents. In this context, the adsorption technology has been extensively used as an effective tool for the removal of dyes from the aqueous phase. This technique uses low-cost adsorbents and the cellulosic material is a biodegradable, cost-effective and renewable polymer, which is not soluble in the majority of solvents because of its crystalline nature and hydrogen bonding. Currently, the modified cellulosic materials for the removal of dyes from wastewater gained much attention. Moreover, the application of cellulose for water treatment can be utilized for controlling pollution and have high economic viability and availability. This review signifies the use of cellulose-based adsorbent for dyes adsorption from wastewater. The key advancement in the preparation and modification of cellulose-based adsorbents is discussed and their adsorption efficiencies are compared with other adsorbents for removal of dyes and adsorption conditions are also considered for the same. The studies reporting cellulose-based adsorption from 2003 to 2022 are included and their various properties are compared for the efficient removal of dyes. The modified cellulosic materials cellulose is a highly effective adsorbent for the remediation of effluents.


Subject(s)
Water Pollutants, Chemical , Water Purification , Coloring Agents/chemistry , Wastewater , Water Pollutants, Chemical/chemistry , Adsorption , Cellulose/chemistry , Water Purification/methods
3.
Int J Biol Macromol ; 106: 1203-1210, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28851642

ABSTRACT

In view of extended applications of nanoparticles, the nanoparticles synthesis is an extensive research field and green synthesis is one of the co-friendly methodologies. Plant extract mediated synthesis of nanoparticles has gained much attention in current decade. In current investigation, copper nanoparticles (CuNPs) were prepared using P. granatum seeds extract (biological molecules) from copper(II) chloride salt. The synthesized CuNPs were characterized by UV-vis spectroscopy, X-ray diffraction measurements (XRD), scanning electron microscopy (SEM), Energy Dispersive X- Ray Spectroscopy (EDX), Fourier transform infra-red spectroscopy (FTIR) and atomic force microscopy techniques. The CuNPs formation occurred through reduction of metal ions followed by nucleation. The size of the CuNPs was in the range of 40-80nm (average particle size was 43.9nm) with semi spherical shape and uniformly distribution. Photocatalytic activity was evaluated by degrading methylene blue dye (150mg/L) at various CuNPs doses (10mg/L-100mg/L). The synthesized CuNPs showed excellent PCA for the degradation of methylene blue (MB) under solar light irradiation and up to 87.11% degradation was achieved. The oxidative degradation mechanism for MB was proposed. In view of efficient PCA, the use of biological molecules of P. granatum seeds extracts for the synthesis of CuNPs.


Subject(s)
Copper/chemistry , Metal Nanoparticles/chemistry , Photochemical Processes/drug effects , Plant Extracts/chemistry , Catalysis/drug effects , Green Chemistry Technology , Metal Nanoparticles/ultrastructure , Plant Extracts/chemical synthesis , Plant Extracts/pharmacology , Seeds/chemistry
4.
J Hazard Mater ; 344: 210-219, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29035715

ABSTRACT

The large amount of synthetic dyes in effluents is a serious concern to be addressed. The chemical reduction is one of the potential way to resolve this problem. In this study, linear and crosslinked polyurethanes i.e. LPUR & CLPUR were synthesized from toluene diisocyanate (TDI), polyethylene glycol (PEG;1000g/mole) and tetraethylenepentamine (TEPA). The structure and morphology of synthesized materials were examined by FTIR, SEM and BET. The CLPUR was found stable in aqueous system with 0.80g/cm3 density and 16.4998m2g-1 surface area. These materials were applied for the reduction of methylene blue in presence of NaBH4. Both, polymers catalyzed the process and showed 100% reduction in 16 and 28mins., respectively, while, the reduction rate was significantly low in absence of these materials, even after 120mins. Furthermore, negligible adsorption was observed with only 7% removal of dye. The best reduction rates were observed at low concentration of dye, increasing concentration of NaBH4 and with more dosage of polymeric catalyst. The kinetic study of process followed zero order kinetics. It was hence concluded that both synthesized polymers played a catalytic role in reduction process. However, stability in aqueous system and better efficiency in reduction process endorsed CLPUR as an optimal choice for further studies.

5.
Int J Biol Macromol ; 103: 783-790, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28495625

ABSTRACT

Recently, the biosynthesis of nanoparticle attracted the attention of scientific community due to its simplicity, ease and eco-friendly nature. In the present study, Camellia Sinensis (C. Sinensis) leaves extract was employed for the synthesis of nickel nanoparticles (NiNPs). The fabricated NiNPs were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) and X-ray diffraction techniques. The photocatalytic activity (PCA) was evaluated by degrading crystal violet (CV) dye. The NiNPs size was in the range of 43.87-48.76nm, spherical in shape and uniformly distributed with magnetization saturation of 0.073 emu/g. The NiNPs showed promising PCA under solar light irradiation. At optimized conditions, up to 99.5% CV dye degradation was achieved. Results revealed that biosynthesis can be adopted for the synthesis of NiNPs in nano-size range since it is simple, cost effective and eco-friendly in nature versus physico-chemical methods.


Subject(s)
Camellia sinensis/chemistry , Metal Nanoparticles/chemistry , Nanotechnology , Nickel/chemistry , Photochemical Processes , Plant Extracts/chemistry , Catalysis , Chemistry Techniques, Synthetic , Oxidation-Reduction , Plant Leaves/chemistry
6.
Chemosphere ; 169: 474-484, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27889513

ABSTRACT

Citrus limon peroxidase mediated decolourization of Direct Yellow 4 (DY4) was investigated. The process variables (pH, temperature, incubation time, enzyme dose, H2O2 amount, dye concentration, co-metal ions and surfactants) were optimized for maximum degradation of dye. Maximum dye decolourization of 89.47% was achieved at pH 5.0, temperature 50 °C, enzyme dose 24 U/mL, H2O2 concentration 0.25 mM and DY4 concentration 18.75 mg/L and incubation time 10 min. The co-metal ions and surfactants did not affect the dye decolourization significantly. Response surface analysis revealed that predicted values were in agreement with experimentally determined responses. The degradation products were identified by UPLC/MS analysis and degradation pathway was proposed. Besides, phytotoxicity assay revealed a considerable detoxification in response of biodegradation of DY4 dye. C. limon showed promising efficiency for DY4 degradation and could possibly be used for the remediation of textile effluents.


Subject(s)
Azo Compounds/metabolism , Benzenesulfonates/metabolism , Biodegradation, Environmental , Citrus/drug effects , Coloring Agents/toxicity , Peroxidases/metabolism , Citrus/enzymology , Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...