Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Physiol ; 62(6): 959-970, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34037236

ABSTRACT

Most land plants entertain a mutualistic symbiosis known as arbuscular mycorrhiza with fungi (Glomeromycota) that provide them with essential mineral nutrients, in particular phosphate (Pi), and protect them from biotic and abiotic stress. Arbuscular mycorrhizal (AM) symbiosis increases plant productivity and biodiversity and is therefore relevant for both natural plant communities and crop production. However, AM fungal populations suffer from intense farming practices in agricultural soils, in particular Pi fertilization. The dilemma between natural fertilization from AM symbiosis and chemical fertilization has raised major concern and emphasizes the need to better understand the mechanisms by which Pi suppresses AM symbiosis. Here, we test the hypothesis that Pi may interfere with AM symbiosis via the phytohormone gibberellic acid (GA) in the Solanaceous model systems Petunia hybrida and Nicotiana tabacum. Indeed, we find that GA is inhibitory to AM symbiosis and that Pi may cause GA levels to increase in mycorrhizal roots. Consistent with a role of endogenous GA as an inhibitor of AM development, GA-defective N. tabacum lines expressing a GA-metabolizing enzyme (GA methyltransferase-GAMT) are colonized more quickly by the AM fungus Rhizoglomus irregulare, and exogenous Pi is less effective in inhibiting AM colonization in these lines. Systematic gene expression analysis of GA-related genes reveals a complex picture, in which GA degradation by GA2 oxidase plays a prominent role. These findings reveal potential targets for crop breeding that could reduce Pi suppression of AM symbiosis, thereby reconciling the advantages of Pi fertilization with the diverse benefits of AM symbiosis.


Subject(s)
Gibberellins/metabolism , Mycorrhizae/physiology , Nicotiana/physiology , Petunia/physiology , Phosphates/metabolism , Gene Expression Regulation, Plant , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/microbiology , Plants, Genetically Modified , Signal Transduction , Symbiosis
2.
Front Plant Sci ; 9: 1270, 2018.
Article in English | MEDLINE | ID: mdl-30233616

ABSTRACT

Arbuscular mycorrhiza (AM) is the most common symbiotic association of plants with microbes. AM fungi occur in the majority of natural habitats and they provide a range of important ecological services, in particular by improving plant nutrition, stress resistance and tolerance, soil structure and fertility. AM fungi also interact with most crop plants including cereals, vegetables, and fruit trees, therefore, they receive increasing attention for their potential use in sustainable agriculture. Basic research of the past decade has revealed the existence of a dedicated recognition and signaling pathway that is required for AM. Furthermore, recent evidence provided new insight into the exchange of nutritional benefits between the symbiotic partners. The great potential for application of AM has given rise to a thriving industry for AM-related products for agriculture, horticulture, and landscaping. Here, we discuss new developments in these fields, and we highlight future potential and limits toward the use of AM fungi for plant production.

3.
Trends Plant Sci ; 22(8): 652-660, 2017 08.
Article in English | MEDLINE | ID: mdl-28622919

ABSTRACT

Most plants entertain mutualistic interactions known as arbuscular mycorrhiza (AM) with soil fungi (Glomeromycota) which provide them with mineral nutrients in exchange for reduced carbon from the plant. Mycorrhizal roots represent strong carbon sinks in which hexoses are transferred from the plant host to the fungus. However, most of the carbon in AM fungi is stored in the form of lipids. The absence of the type I fatty acid synthase (FAS-I) complex from the AM fungal model species Rhizophagus irregularis suggests that lipids may also have a role in nutrition of the fungal partner. This hypothesis is supported by the concerted induction of host genes involved in lipid metabolism. We explore the possible roles of lipids in the light of recent literature on AM symbiosis.


Subject(s)
Carbohydrate Metabolism , Glomeromycota/physiology , Lipid Metabolism , Mycorrhizae/physiology , Plants/microbiology , Carbon/metabolism , Plant Roots/microbiology , Plants/metabolism , Symbiosis
4.
Nat Plants ; 2(6): 16074, 2016 05 27.
Article in English | MEDLINE | ID: mdl-27255838

ABSTRACT

Petunia hybrida is a popular bedding plant that has a long history as a genetic model system. We report the whole-genome sequencing and assembly of inbred derivatives of its two wild parents, P. axillaris N and P. inflata S6. The assemblies include 91.3% and 90.2% coverage of their diploid genomes (1.4 Gb; 2n = 14) containing 32,928 and 36,697 protein-coding genes, respectively. The genomes reveal that the Petunia lineage has experienced at least two rounds of hexaploidization: the older gamma event, which is shared with most Eudicots, and a more recent Solanaceae event that is shared with tomato and other solanaceous species. Transcription factors involved in the shift from bee to moth pollination reside in particularly dynamic regions of the genome, which may have been key to the remarkable diversity of floral colour patterns and pollination systems. The high-quality genome sequences will enhance the value of Petunia as a model system for research on unique biological phenomena such as small RNAs, symbiosis, self-incompatibility and circadian rhythms.


Subject(s)
Evolution, Molecular , Genome, Plant , Hybridization, Genetic , Petunia/genetics , Polyploidy
5.
Trends Plant Sci ; 20(6): 344-50, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25868653

ABSTRACT

Roots and flowers are formed at the extreme ends of plants and they differ in almost every aspect of their development and function; even so, they exhibit surprising molecular commonalities. For example, the calcium and calmodulin-dependent protein kinase (CCaMK) plays a central role in root symbioses with fungi and bacteria, but is also highly expressed in developing anthers. Moreover, independent evidence from transcriptomics, phylogenomics, and genetics reveals common developmental elements in root symbioses and reproductive development. We discuss the significance of these overlaps, and we argue that an integrated comparative view of the two phenomena will stimulate research and provide new insight, not only into shared components, but also into the specific aspects of anther development and root symbioses.


Subject(s)
Flowers/physiology , Mycorrhizae/physiology , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Flowers/growth & development , Lipid Metabolism , Pollination , Symbiosis
7.
PLoS One ; 9(6): e100997, 2014.
Article in English | MEDLINE | ID: mdl-24978694

ABSTRACT

To identify specific genes determining the initiation and formation of adventitious roots (AR), a microarray-based transcriptome analysis in the stem base of the cuttings of Petunia hybrida (line W115) was conducted. A microarray carrying 24,816 unique, non-redundant annotated sequences was hybridized to probes derived from different stages of AR formation. After exclusion of wound-responsive and root-regulated genes, 1,354 of them were identified which were significantly and specifically induced during various phases of AR formation. Based on a recent physiological model distinguishing three metabolic phases in AR formation, the present paper focuses on the response of genes related to particular metabolic pathways. Key genes involved in primary carbohydrate metabolism such as those mediating apoplastic sucrose unloading were induced at the early sink establishment phase of AR formation. Transcriptome changes also pointed to a possible role of trehalose metabolism and SnRK1 (sucrose non-fermenting 1- related protein kinase) in sugar sensing during this early step of AR formation. Symplastic sucrose unloading and nucleotide biosynthesis were the major processes induced during the later recovery and maintenance phases. Moreover, transcripts involved in peroxisomal beta-oxidation were up-regulated during different phases of AR formation. In addition to metabolic pathways, the analysis revealed the activation of cell division at the two later phases and in particular the induction of G1-specific genes in the maintenance phase. Furthermore, results point towards a specific demand for certain mineral nutrients starting in the recovery phase.


Subject(s)
Gene Expression Regulation, Plant , Genes, Plant , Petunia/genetics , Plant Roots/genetics , Transcriptome , Gene Expression Profiling , Gene Expression Regulation, Developmental , Metabolic Networks and Pathways/genetics , Molecular Sequence Annotation , Oligonucleotide Array Sequence Analysis , Petunia/growth & development , Plant Roots/growth & development , Plant Stems/genetics , Plant Stems/growth & development
8.
PLoS One ; 9(6): e90841, 2014.
Article in English | MEDLINE | ID: mdl-24608923

ABSTRACT

Phosphorus and nitrogen are essential nutrient elements that are needed by plants in large amounts. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. On the other hand, these nutrients influence root colonization by mycorrhizal fungi and symbiotic functioning. This represents a feedback mechanism that allows plants to control the fungal symbiont depending on nutrient requirements and supply. Elevated phosphorus supply has previously been shown to exert strong inhibition of arbuscular mycorrhizal development. Here, we address to what extent inhibition by phosphorus is influenced by other nutritional pathways in the interaction between Petunia hybrida and R. irregularis. We show that phosphorus and nitrogen are the major nutritional determinants of the interaction. Interestingly, the symbiosis-promoting effect of nitrogen starvation dominantly overruled the suppressive effect of high phosphorus nutrition onto arbuscular mycorrhiza, suggesting that plants promote the symbiosis as long as they are limited by one of the two major nutrients. Our results also show that in a given pair of symbiotic partners (Petunia hybrida and R. irregularis), the entire range from mutually symbiotic to parasitic can be observed depending on the nutritional conditions. Taken together, these results reveal complex nutritional feedback mechanisms in the control of root colonization by arbuscular mycorrhizal fungi.


Subject(s)
Glomeromycota/physiology , Mycorrhizae/physiology , Nitrates/physiology , Petunia/microbiology , Phosphates/physiology , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Petunia/growth & development , Petunia/metabolism , Phylogeny , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/microbiology , Symbiosis , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...