Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Plant Dis ; 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38616391

ABSTRACT

California leads the United States in peach (Prunus persica L.) production, with approximately 505,000 tons produced in 2021 and valued at $378.3 million (California Agriculture Statistics Review, 2021-2022). During the spring and summer of 2023, twig and branch dieback were observed in three peach orchards (cvs. Late Ross and Starn) in San Joaquin County, California. Wood cankers and discoloration also occurred in branches, generally initiating at pruning wounds. Approximately 8 symptomatic twigs or branches per orchard were collected to proceed with the isolation of necrotic tissues on acidified potato dextrose agar (APDA). Isolations consistently yielded colonies of the fungal pathogen Calosphaeria pulchella (Pers. : Fr.) J. Schröt. (Réblová et al. 2004; Trouillas et al. 2012). Pure cultures were obtained by transferring single hyphal tips onto new APDA Petri plates. Colonies on APDA grew dark pink to red or purple in their center, with a white margin. Conidiogenesis was phialidic, producing round conidial masses at the tip of phialides. Conidia were produced abundantly on APDA, and were hyaline, allantoid to oblong-ellipsoidal, 4 to 5.5 (7) × 1.2 to 2.3 µm (n = 60). Two representative isolates (SJC-62 and SJC-64) were selected for genomic DNA extraction and sequencing of the internal transcribed spacer region (ITS) using ITS5/ITS4 universal primers and the beta-tubulin (TUB2) gene region using primers Bt2a and Bt2b. Consensus sequences of the two genes for the two isolates (ITS: PP063990, PP063991; TUB2: PP068303, PP068304) were compared to reference sequences (Réblová et al. 2015; Trouillas et al. 2012) using BLAST analysis. The ITS sequences of SJC-62 and SJC-64 were 99.8 and 99.5% identical to that of C. pulchella ex-type strain CBS 115999 (NR145357) and reference strain SS07 (HM237297); the TUB2 sequences were at least 98.5% identical to that of C. pulchella CBS 115999 (KT716476). Pathogenicity tests were conducted in 2- to 3-year-old healthy branches on 7-year-old peach trees, cvs. Loadel, Late Ross and Starn using the two fungal isolates and a control treatment (1 branch per treatment and 3 branches per tree) on each of 8-tree replicates. Branches were inoculated in June 2023 following wounding with a 5 mm cork borer to remove the bark and placing an agar plug from the margin of 10-day-old colonies on APDA directly into the fresh wound. Sterile agar plugs were used as controls. Inoculation sites were covered with petroleum jelly and wrapped with Parafilm to retain moisture. The experiment was completed twice. After four months, cankers and vascular discolorations developed around the inoculation sites. Length of vascular discoloration in inoculated branches averaged 72, 75, and 79 mm, for the Loadel, Starn, and Late Ross cvs., respectively. Calosphaeria pulchella was re-isolated from inoculated branches at 80 to 100% recovery rate, thus fulfilling Koch's postulates. The average length of vascular discoloration in the control was 13.5 mm and no fungi were recovered from control branches. Calosphaeria canker caused by C. pulchella is a global disease of sweet cherry. Recently, it was reported to cause cankers in peach trees in Chile (Grinbergs et al. 2023). To our knowledge, this is the first report of C. pulchella causing cankers and twig dieback of peach trees in the United States. These findings improve our knowledge of the etiology of canker diseases affecting peach trees and is critical for the development of effective disease management strategies.

2.
Plant Dis ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587800

ABSTRACT

Recurrent epiphytotics of X-disease, caused by 'Candidatus Phytoplasma pruni', have inflicted significant losses on commercial cherry and peach production across North America in the last century. During this period, there have been multiple studies reporting different disease phenotypes, and more recently, identifying different strains through sequencing core genes, but the symptoms have not, to date, been linked with genotype. Therefore, in this study we collected and assessed differing disease phenotypes from multiple U.S. states and conducted multi-locus sequence analysis on these strains. We identified a total of five lineages associated with the induction of X-disease on commercial Prunus species and two lineages that were associated with wild P. virginiana. Despite a century of interstate plant movement, there were regional trends in terms of lineages present, and lineage-specific symptoms were observed on P. avium, P. cerasus, and P. virginiana, but not on P. persica. Cumulatively, these data have allowed us to define 'true' X-disease-inducing strains of concern to the stone fruit industry across North America, as well as potential sources of infection that exist in the extra-orchard environment.

3.
Plant Dis ; 108(6): 1695-1702, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38173260

ABSTRACT

The major fungal canker pathogens causing branch dieback of sweet cherry trees in California include Calosphaeria pulchella, Cytospora sorbicola, and Eutypa lata. These pathogens have long been known to infect cherry trees mainly through pruning wounds. However, recent field observations revealed numerous shoots and fruiting spurs exhibiting dieback symptoms with no apparent pruning wounds or mechanical injuries. Accordingly, this study was conducted to assess the incidence of the three pathogens in symptomatic terminal shoots and dying fruiting spurs, in addition to the wood below pruning wounds in branches. Surveys were conducted in five sweet cherry orchards across three counties in California. We also investigated the possibility that leaf scars, bud scars, and wounds resulting from fruit picking could serve as infection courts for Cal. pulchella, Cyt. sorbicola, and E. lata by means of artificial inoculations in the field. Orchard surveys revealed that Cal. pulchella had the highest pathogen incidence below pruning wounds in branch samples, followed by Cyt. sorbicola and E. lata. Among terminal shoots with dieback symptoms and dying fruiting spurs, Cyt. sorbicola was the most prevalent, followed by Cal. pulchella. Results from field inoculations indicated that fruit-picking wounds could serve as important infection courts for Cal. pulchella, Cyt. sorbicola, and E. lata, with average pathogen recovery of 41.5, 63, and 36.2%, respectively. Results also indicated that leaf and bud scars could serve as an entry site for Cyt. sorbicola, although recovery was relatively low. The present study is the first to identify harvest-induced wounds on fruiting spurs of sweet cherry as an important infection court of Cal. pulchella, Cyt. sorbicola, and E. lata.


Subject(s)
Ascomycota , Plant Diseases , Prunus avium , Plant Diseases/microbiology , Ascomycota/physiology , Prunus avium/microbiology , Plant Leaves/microbiology , California , Fruit/microbiology
4.
Plant Dis ; 108(6): 1470-1475, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38240713

ABSTRACT

Persimmon is a relatively new crop to California agriculture. Asian persimmons (Diospyros kaki) are the dominant species commercially cultivated in the United States, primarily grown in California, covering approximately 1,153 ha of bearing trees. In the growing seasons of 2020 and 2021, unusual shoot blight and branch cankers were observed in several persimmon orchards in San Joaquin and Solano counties in California. The most prevalent symptoms were well-defined black discoloration in the cambium and streaking in the vascular tissues of green shoots. On woody branches and old pruning wounds, symptoms manifested as black wedge-shaped cankers. Isolations from affected tissues revealed the occurrence of Diaporthe species, including D. chamaeropis, D. foeniculina, and an undescribed Diaporthe sp. as the most frequent isolated pathogens, followed by Eutypella citricola and Phaeoacremonium iranianum. The isolates were identified through multilocus phylogenetic analyses using nucleotide sequences of the rDNA internal transcribed spacer, ß-tubulin, and translation elongation factor 1-alpha genes. To fulfill Koch's postulates, mycelium plugs of the various fungal species identified were inserted in 2-year-old branches of mature persimmon trees after making wounds using a corkborer in field conditions. Results showed that Diaporthe spp., E. citricola, and P. iranianum are the main causal agents of branch canker and shoot dieback of persimmon trees in California, with Diaporthe spp. being the most frequently isolated pathogen.


Subject(s)
Diospyros , Phylogeny , Plant Diseases , Diospyros/microbiology , Plant Diseases/microbiology , California , Ascomycota/physiology , Ascomycota/genetics , Plant Shoots/microbiology , DNA, Fungal/genetics
5.
Plant Dis ; 2023 May 25.
Article in English | MEDLINE | ID: mdl-37227433

ABSTRACT

Peaches (Prunus persica L.) are an important crop in the United States with California leading the nation in peach production, with approximately 505,000 tons valued at $378.3 million (USDA National Agricultural Statistics Service, 2021, https://www.nass.usda.gov/). From April to July 2022, symptoms of branch and scaffold canker as well as shoot dieback were observed in three peach (cvs. Loadel, Late Ross and Starn) orchards located in San Joaquin County, California. Samples were collected from about 12 trees for each cultivar. Fast-growing, white, flat colonies were consistently isolated from active cankers on acidified potato dextrose agar (APDA) following the method described by (Lawrence et al. 2017). Pure fungal cultures were obtained by transferring single hyphal tips onto new APDA Petri plates. A total of 22 isolates were obtained. Each fungal isolate was recovered from a single diseased branch (40 to 55% recovery). All isolates in this study shared similar morphological characteristics. Fungal colonies were fast-growing with relatively even but slightly dentate margin, flat with white to off-white mycelium that turned vinaceous buff to pale greyish sepia (Rayner 1970) with age. Black, globose, ostiolated pycnidia, 0.8-(1.3)-2.2 mm diameter, with brownish surface hyphae formed on peach wood embedded in PDA after approximately three weeks and exudated buff-colored mucilage. Pycnidia were both solitary and aggregated and had multiple internal locules sharing invaginated walls. Conidiogenous cells were hyaline, smooth-walled, septate, tapering towards the apex, 13-(18.2)-25.1 × 0.8-(1.3)-1.9 µm (n = 40). Conidia were hyaline, allantoid, smooth, aseptate, 5.5-(6.3)-7.1 × 1.4-(1.9)-2.3 µm (n = 40). Genomic DNA was extracted and sequences of the internal transcribed spacer region (ITS) using ITS5/ITS4 universal primers, translation elongation factor 1α gene (TEF) using primers EF1-728F/EF1-986R, second largest subunit of RNA polymerase II (RPB2) using primers RPB2-5F2/fRPB2-7cR, and actin gene region (ACT) using primers ACT-512F/ACT-783R were obtained and compared with sequences available in GenBank (Lawrence et al. 2018; Hanifeh et al. 2022). Isolates were identified as Cytospora azerbaijanica following DNA sequencing and morphological identification. Consensus sequences of the four genes of two representative isolates (SJC-66 and SJC-69) were deposited into GenBank database (ITS: OQ060581 and OQ060582; ACT: OQ082292, OQ082295; TEF: OQ082290 and OQ082293; RPB2: OQ082291 and OQ082294). The Basic Local Alignment Search Tool (BLAST) indicated that the sequenced RPB2 genes of isolates (SJC-66 and SJC-69) were at least 99% identical to that of Cytospora sp. strain shd47 (Accession: MW824360) covering at least 85% of the sequences. The actin genes from our isolates were at least 97.85% identical to that of Cytospora sp. strain shd47 (Accession: MZ014513), covering 100% of the sequences. The translation elongation factor gene from isolates (SJC-66 and SJC-69) was at least 96.4% identical to that of Cytospora sp. strain shd166 (Accession: OM372512), covering 100% of the query. Those top hit strains belong to C. azerbaijanica, recently reported by Hanifeh et al. (2022). Pathogenicity tests were performed by inoculating eight wounded, 2- to 3-year-old healthy branches on each of eight 7-year-old peach trees, cvs. Loadel, Late Ross and Starn, using 5-mm-diameter mycelium plugs collected from the margin of an actively growing fungal colony on APDA. Controls were mock-inoculated with sterile agar plugs. Inoculation sites were covered with petroleum jelly and wrapped with Parafilm to keep moisture. The experiment was performed twice. After four months, inoculation tests resulted in vascular discoloration (canker) above and below the inoculation sites (average necrosis length of 114.1 mm). Cytospora azerbaijanica was re-isolated from all infected branches (70 to 100% recovery) completing Koch's postulates. Controls remained symptomless and no fungi were isolated from the slightly discolored tissue. Cytospora species are destructive canker and dieback pathogens of numerous woody hosts worldwide. Recently, C. azerbaijanica was reported in causing canker disease of apple trees in Iran (Hanifeh et al. 2022). To our knowledge, this is the first report of C. azerbaijanica causing canker and shoot dieback of peach trees in the United States and worldwide. These findings will aid towards a better understanding of genetic diversity and host range of C. azerbaijanica.

6.
Plant Dis ; 107(10): 3079-3084, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36995771

ABSTRACT

Field experiments were conducted during the fall-winter seasons of 2017 to 2018 and 2018 to 2019 to evaluate the efficacy of various fungicides to control Neofabraea leaf lesion of olive. Field trials were conducted in the highly susceptible cultivar Arbosana in a commercial, super-high-density orchard in San Joaquin County, California. Up to eight fungicidal products were applied using an air blast backpack sprayer, and their efficacy was compared with different application strategies. Results showed that most products were effective in reducing infection by the pathogens and limiting disease severity. Overall, best disease control was achieved by thiophanate-methyl, cyprodinil, difenoconazole + cyprodinil, and chlorothalonil, providing up to 75% reduction in disease severity. Copper hydroxide did not control the disease. In 2018 to 2019, the fungicides difenoconazole + cyprodinil and ziram were evaluated in additional field trials using different application strategies (single, dual, and combined applications) suitable for pathogen resistance management. Results showed that both products provided significant reduction in disease severity (∼50%), although no differences in efficacy were found between the two products nor between the different application strategies. Both products performed equally using one or two applications at 2-week intervals following harvest.


Subject(s)
Ascomycota , Fungicides, Industrial , Olea , Fungicides, Industrial/pharmacology , Plant Leaves , California
7.
Plant Dis ; 106(2): 432-438, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34455807

ABSTRACT

Management of Monilinia laxa, the causal agent of brown rot blossom blight in almond (Prunus dulcis), relies heavily on the use of chemical fungicides during bloom. However, chemical fungicides can have nontarget effects on beneficial arthropods, including pollinators, and select for resistance in the pathogen of concern. Almond yield is heavily reliant on successful pollination by healthy honey bees (Apis mellifera); thus, identifying sustainable, effective, and pollinator-friendly control methods for blossom blight during bloom is desirable. Flower-inhabiting microbes could provide a natural, sustainable form of biocontrol for M. laxa, while potentially minimizing costly nontarget effects on almond pollinators and the services they provide. As pollinators are sensitive to floral microbes and their associated taste and scent cues, assessing effects of prospective biocontrol species on pollinator attraction is also necessary. Here, our objective was to isolate and identify potential biocontrol microbes from an array of agricultural and natural flowering hosts and test their efficacy in suppressing M. laxa growth in culture. Out of an initial 287 bacterial and fungal isolates identified, 56 were screened using a dual culture plate assay. Most strains reduced M. laxa growth in vitro. Ten particularly effective candidate microbes were further screened for their effect on honey bee feeding. Of the 10, nine were found to both strongly suppress M. laxa growth in culture and not reduce honey bee feeding. These promising results suggest a number of strong candidates for augmentative microbial biocontrol of brown rot blossom blight in almond with potentially minimal effects on honey bee pollination.


Subject(s)
Antibiosis , Ascomycota , Bees , Flowers/microbiology , Prunus dulcis , Animals , Pollination , Prospective Studies , Prunus dulcis/microbiology
8.
Plant Dis ; 106(1): 197-206, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34515509

ABSTRACT

Pistachio is one of the most widely cultivated nut crops in California, with approximately 115,000 ha of bearing pistachio trees. In recent years, several orchards were identified, with declining trees leading to substantial tree losses. Symptoms included trees with poor vigor, yellowing and wilting of leaves, crown rot, and profuse gumming on the lower portion of trunks. Thirty-seven Phytophthora-like isolates were obtained from crown rot tissues in the rootstock of grafted pistachio trees and characterized by means of multilocus phylogeny comprising internal transcribed spacer rDNA, beta-tubulin, and mt cox1 sequence data. The analysis provided strong support for the delineation and identification of three Phytophthora species associated with declining pistachio trees, including P. niederhauserii, P. mediterranea, and Phytophthora taxon walnut. Pathogenicity studies in potted University of California Berkeley I (UCBI) rootstocks (clonal and seeded) confirmed that all three Phytophthora species can cause crown and root rot of pistachio, thus fulfilling Koch's postulates. The widespread occurrence of Phytophthora crown rot in recently planted pistachio orchards and the susceptibility of UCBI rootstocks suggest this disease constitute an emerging new threat to the pistachio industry of California. To the best of our knowledge, this study is the first to report P. niederhauserii, P. mediterranea, and Phytophthora taxon walnut as causal agents of crown and root rots of pistachio.


Subject(s)
Phytophthora , Pistacia , Phylogeny , Phytophthora/genetics , Plant Diseases , Trees
9.
J Clin Med ; 10(19)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34640477

ABSTRACT

BACKGROUND: Evaluate the impact of valvular calcifications measured on cardiac computed tomography (CCT) in patients with infective endocarditis (IE). METHODS: Seventy patients with native IE (36 aortic IE, 31 mitral IE, 3 bivalvular IE) were included and explored with CCT between January 2016 and April 2018. Mitral and aortic valvular calcium score (VCS) were measured on unenhanced calcium scoring images, and correlated with clinical, surgical data, and 1-year death rate. RESULTS: VCS of patients with mitral IE and no peripheral embolism was higher than those with peripheral embolism (868 (25-1725) vs. 6 (0-95), p < 0.05). Patients with high calcified mitral IE (mitral VCS > 100; n = 15) had a lower rate of surgery (40.0% vs.78.9%; p = 0.03) and a higher 1-year-death risk (53.3% vs. 10.5%, p = 0.04; OR = 8.5 (2.75-16.40) than patients with low mitral VCS (n = 19). Patients with aortic IE and high aortic calcifications (aortic VCS > 100; n = 18) present more frequently atypical bacteria on blood cultures (33.3% vs. 4.8%; p = 0.03) than patients with low aortic VCS (n = 21). CONCLUSION: The amount of valvular calcifications on CT was associated with embolism risk, rate of surgery and 1-year risk of death in patients with mitral IE, and germ's type in aortic IE raising the question of their systematic quantification in native IE.

10.
Plant Dis ; 105(11): 3368-3375, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33560878

ABSTRACT

Almond trunk and branch canker diseases constitute a major cause of tree mortality in California. Numerous fungal pathogens have been associated with these canker diseases and pruning wounds act as major infection courts. Before this study, there were no products registered in California for the management of these diseases. In this study, fungicidal products including synthetic chemistries, biocontrols, paint, and a sealant were evaluated for preventing fungal pathogen infection via pruning wounds. In four field trials conducted over two dormant seasons, 16 pruning wound treatments were tested using handheld spray applications against five almond canker pathogens, namely Botryosphaeria dothidea, Neofusicoccum parvum, Cytospora sorbicola, Ceratocystis destructans, and Eutypa lata. The fungicide thiophanate-methyl (Topsin M; United Phosphorus, Bandra West, Mumbai, India) provided 82% overall disease prevention against four fungal pathogens. The biological control agent, Trichoderma atroviride SC1 (Vintec; Bi-PA, Londerzeel, Belgium), tested at three application rates, resulted in 90 to 93% protection of pruning wounds in field trials, and for individual pathogens ranged from 81 to 100% protection for the three rates. At the time of this publication, Vintec is being considered for registration as a biological control product for the prevention of almond canker diseases, while Topsin M is recommended to growers for the prevention of almond canker diseases. This research indicates that effective protection of pruning wounds from infection by almond canker pathogens can be achieved with a one-time spray application of thiophanate-methyl or the biocontrol T. atroviride SC1 (recommended 2 g/liter) after pruning.


Subject(s)
Fungicides, Industrial , Plant Diseases , Prunus dulcis , Biological Control Agents , Fungicides, Industrial/pharmacology , Plant Diseases/prevention & control , Prunus dulcis/microbiology
11.
Plant Dis ; 105(8): 2149-2159, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33289413

ABSTRACT

A single fungal pathogen was consistently isolated from symptomatic wood of olive trees (Olea europaea) displaying branch and trunk cankers in superhigh-density orchards in the Sacramento and San Joaquin Valleys of California. Morphological characters of the pathogen included two distinct types of conidia (thick-walled, dark brown, and globose and thin-walled, hyaline, and oblong to ellipsoid) and three types of phialides, indicating a pleurostoma-like fungus. Phylogenetic results of four nuclear loci including the internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2) and partial sequences of the actin, beta-tubulin, and translation elongation factor 1-α genes confirmed the isolates as Pleurostoma richardsiae. Pathogenicity trials conducted in the field involving 2- to 3-year-old branches of three widely planted oil olive cultivars (Arbequina, Arbosana, and Koroneiki) satisfied Koch's postulates and confirmed the pathogenic nature of this species to cause the decline of olive trees in California. All three cultivars were equally susceptible to Pl. richardsiae, indicating no detectable resistance to the pathogen. Additional isolations from symptomatic hosts including almond, peach, pistachio, and plum, also confirmed this species, suggesting that Pl. richardsiae is widespread in agricultural systems and should be considered an emerging pathogen of fruit and nut crops in California.


Subject(s)
Ascomycota , Olea , Prunus dulcis , Ascomycota/genetics , Phylogeny
12.
Plant Dis ; 105(2): 346-360, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32757731

ABSTRACT

Almond canker diseases are destructive and can reduce the yield as well as the lifespan of almond orchards. These diseases may affect the trunk and branches of both young and mature trees and can result in tree death soon after orchard establishment in severe cases. Between 2015 and 2018, 70 almond orchards were visited throughout the Central Valley of California upon requests from farm advisors for canker disease diagnosis. Two major canker diseases were identified, including Botryosphaeriaceae cankers and Ceratocystis canker. In addition, five less prevalent canker diseases were identified, including Cytospora, Eutypa, Diaporthe, Collophorina, and Pallidophorina canker. Seventy-four fungal isolates were selected for multilocus phylogenetic analyses of internal transcribed spacer region ITS1-5.8S-ITS2 and part of the translation elongation factor 1-α, ß-tubulin, and glyceraldehyde 3-phosphate dehydrogenase gene sequences; 27 species were identified, including 12 Botryosphaeriaceae species, Ceratocystis destructans, five Cytospora species, Collophorina hispanica, four Diaporthe species, two Diatrype species, Eutypa lata, and Pallidophorina paarla. The most frequently isolated species were Ceratocystis destructans, Neoscytalidium dimidiatum, and Cytospora californica. Pathogenicity experiments on almond cultivar Nonpareil revealed that Neofusicoccum parvum, Neofusicoccum arbuti, and Neofusicoccum mediterraneum were the most virulent. Botryosphaeriaceae cankers were predominantly found in young orchards and symptoms were most prevalent on the trunks of trees. Ceratocystis canker was most commonly found in mature orchards and associated with symptoms found on trunks or large scaffold branches. This study provides a thorough examination of the diversity and pathogenicity of fungal pathogens associated with branch and trunk cankers of almond in California.


Subject(s)
Prunus dulcis , Ascomycota , California , DNA, Fungal/genetics , Phylogeny , Plant Diseases
13.
Plants (Basel) ; 9(2)2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31973206

ABSTRACT

In this study, declining pistachio rootstocks were detected in newly planted commercial pistachio orchards in Kern County, California. Symptoms were characterized by wilted foliage combined with crown rot in the rootstock. From diseased trees, 42 isolates were obtained, and all had similar cultural and morphological characteristics of Macrophomina phaseolina. Analyses of nucleotide sequences of three gene fragments, the internal transcribed spacer region (ITS1-5.8S-ITS2), partial sequences of ß-tubulin, and translation elongation factor 1-α (TEF1) confirmed this identification, and 20 representative isolates are presented in the phylogenetic study. Testing of Koch's postulates showed that M. phaseolina, when inoculated to stems and roots of the pistachio rootstocks using mycelial plugs or a microsclerotial suspension, is indeed pathogenic to this host. The widely used clonal University of California Berkeley I (UCBI) rootstock appeared highly susceptible to M. phaseolina, suggesting that this pathogen is an emerging threat to the production of pistachio in California. This study confirmed the association of M. phaseolina with the decline of pistachio trees and represents the first description of this fungus as a crown rot-causing agent of pistachio in California.

14.
Plant Dis ; 103(12): 3018-3030, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31545699

ABSTRACT

California produces over 95% of the olives grown in the United States. In 2017, California's total bearing acreage for olives was 14,570 hectares producing 192,000 tons of olives valued at $186.6 million. During the early spring of 2016, unusual leaf and shoot lesions were detected in olive trees from superhigh-density orchards in the Northern San Joaquin and Sacramento valleys of California. Affected trees displayed numerous leaf and shoot lesions developing at wounds created by mechanical harvesters. The 'Arbosana' cultivar was highly affected by the disease, whereas the disease was sporadic in 'Arbequina' and not found in 'Koroneiki' cultivar. Two fungal species, Neofabraea kienholzii and Phlyctema vagabunda, were found to be consistently associated with the disease, and Koch's postulates were completed. Species identity was confirmed by morphology and molecular data of the partial large subunit rDNA, the internal transcribed spacer region, and partial beta-tubulin region. The disease signs and symptoms are described and illustrated.


Subject(s)
Ascomycota , Olea , Plant Leaves , Plant Shoots , Ascomycota/cytology , Ascomycota/genetics , Ascomycota/physiology , California , DNA, Fungal/genetics , DNA, Ribosomal/genetics , Olea/microbiology , Plant Leaves/microbiology , Plant Shoots/microbiology
15.
Plant Dis ; 103(9): 2397-2411, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31322495

ABSTRACT

A survey was conducted during 2015 and 2016 in pistachio orchards throughout the San Joaquin Valley of California to investigate the occurrence of canker diseases and identify the pathogens involved. Cankers and dieback symptoms were observed mainly in orchards aged >15 years. Symptoms of canker diseases included brown to dark brown discoloration of vascular tissues, wood necrosis, and branch dieback. In total, 58 fungal isolates were obtained from cankers and identified based on multilocus phylogenetic analyses (internal transcribed spacer, glyceraldehyde 3-phosphate dehydrogenase, ß-tubulin, calmodulin, actin 1, and translation elongation factor 1α) representing 11 fungal species: Colletotrichum karstii, Cytospora californica, Cytospora joaquinensis, Cytospora parapistaciae, Cytospora pistaciae, Diaporthe ambigua, Didymella glomerata, Diplodia mutila, Neofusicoccum mediterraneum, Phaeoacremonium canadense, and Schizophyllum commune. Pathogenicity tests conducted in the main pistachio cultivars Kerman, Golden Hills, and Lost Hills using the mycelium-plug method indicated that all fungal species were pathogenic to Pistacia vera. All species tested caused cankers in pistachio branches, although virulence among species varied from high to moderate. Overall, N. mediterraneum and Cytospora spp. were the most widespread and virulent species associated with canker diseases of pistachio in California.


Subject(s)
Fungi , Pistacia , Virulence , California , Fungi/pathogenicity , Fungi/physiology , Phylogeny , Pistacia/classification , Pistacia/microbiology , Plant Diseases/microbiology
16.
Plant Dis ; 103(8): 1931-1939, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31188738

ABSTRACT

California produces 99.1% of pistachios grown in the United States, and diseases affecting pistachio rootstocks represent a constant challenge to the industry. Field surveys of fungi associated with pistachio rootstocks with symptoms of crown rot and stem canker in three central California counties followed by phylogenetic analyses of translation elongation factor 1-α and second largest subunit of RNA polymerase II gene fragments identified three Fusarium species (Fusarium equiseti, Fusarium oxysporum, and Fusarium proliferatum) and two Neocosmospora species (Neocosmospora falciformis and Neocosmospora solani). F. oxysporum and N. falciformis were the fungal species most frequently recovered from symptomatic pistachio trees. Inoculations of detached twigs of cultivar Kerman pistachio Pioneer Gold I and clonal University of California, Berkeley I (UCBI) rootstocks showed that all five species could colonize pistachio wood and cause vascular discolorations. Pathogenicity tests in potted pistachio trees completed Koch's postulates and confirmed that F. oxysporum, F. proliferatum, N. falciformis, and N. solani were capable of producing rot and discoloration in stems of clonal UCBI rootstocks, the most widely planted pistachio rootstock in California. To our knowledge, this study is the first to present insights into the biodiversity and biology of Fusarium and Neocosmospora species associated with pistachio trees in California.


Subject(s)
Ascomycota , Fusarium , Pistacia , Ascomycota/classification , Ascomycota/physiology , California , Fusarium/classification , Fusarium/physiology , Phylogeny , Pistacia/microbiology , Plant Diseases/microbiology
17.
Plant Dis ; 103(7): 1464-1473, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30998450

ABSTRACT

Colletotrichum Corda, 1831 species are well-documented pathogens of citrus that are associated with leaf and fruit anthracnose diseases. However, their role in twig and shoot dieback diseases of citrus has recently become more prominent. Recent surveys of orchards in the Central Valley of California have revealed C. gloeosporioides and a previously undocumented species, C. karstii, to be associated with twig and shoot dieback. Pathogenicity tests using clementine (cv. 4B) indicated that both C. karstii and C. gloeosporioides are capable of producing lesions following inoculation of citrus stems. Pathogenicity tests also revealed C. karstii to be the most aggressive fungal species producing the longest lesions after 15 months. The majority of spores trapped during this study were trapped during or closely following a precipitation event with the majority of spores being trapped from January through May. These findings confirm C. karstii as a new pathogen of citrus in California.


Subject(s)
Colletotrichum , Virulence , California , Colletotrichum/classification , Colletotrichum/pathogenicity , Colletotrichum/physiology , Plant Diseases/microbiology , Spores, Fungal/isolation & purification
18.
IMA Fungus ; 9: 333-370, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30622886

ABSTRACT

Cytospora species are destructive canker and dieback pathogens of woody hosts in natural and agroecosystems around the world. In this genus, molecular identification has been limited due to the paucity of multi-locus sequence typing studies and the lack of sequence data from type specimens in public repositories, stalling robust phylogenetic reconstructions. In most cases a morphological species concept could not be applied due to the plasticity of characters and significant overlap of morphological features such as spore dimensions and fruiting body characters. In this study, we employed a molecular phylogenetic framework with the inclusion of four nuclear loci (ITS, translation elongation factor 1-alpha, actin, and beta-tubulin) to unveil the biodiversity and taxonomy of this understudied important genus of plant pathogens. Phylogenetic inferences based on 150 Californian isolates revealed 15 Cytospora species associated with branch and twig cankers and dieback of almond, apricot, cherry, cottonwood, olive, peach, pistachio, plum, pomegranate, and walnut trees in California. Of the 15 species recovered in this study, 10 are newly described and typified, in addition to one new combination. The pathogenic status of the newly described Cytospora species requires further investigation as most species were associated with severe dieback and decline of diverse and economically important fruit and nut crops in California.

19.
Plant Dis ; 102(8): 1638-1647, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30673426

ABSTRACT

Almond trees with trunk and branch cankers were observed in several orchards across almond-producing counties in California. Symptoms of cankers included bark lesions, discoloration of xylem tissues, longitudinal wood necrosis, and extensive gumming. Spur and shoot blight associated with rotted fruit were detected in two orchards in Kern County. The fungus Neoscytalidium dimidiatum was consistently recovered from the various cankers, infected fruit, and blighted shoots and its identity was confirmed based on phylogenetic and morphological studies. Phylogenetic analyses of the internal transcribed spacer, translation elongation factor 1-α, and ß-tubulin genes comparing 47 strains from California with reference specimens within the family Botryosphaeriaceae and coupled with detailed morphological observations validated the identity of the pathogenic fungus. Pathogenicity tests conducted in the field using 1- to 2-year-old branches inoculated with mycelium plugs or conidial suspensions and attached fruit inoculated with conidial suspensions fulfilled Koch's postulates. N. dimidiatum appeared highly virulent in almond-producing cankers of up to 22 cm in length within 4 weeks using mycelium plug inoculations as well as severe fruit rot combined with spur blight on the fruit-bearing spurs. This study reports, for the first time, the fungus N. dimidiatum as a pathogen of almond in California causing canker, shoot blight, and fruit rot. Disease symptoms are described and illustrated.


Subject(s)
Ascomycota/physiology , Fruit/microbiology , Plant Diseases/microbiology , Plant Shoots/microbiology , Prunus dulcis/microbiology , Ascomycota/classification , Ascomycota/genetics , California , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Fungal Proteins/genetics , Mycelium/genetics , Peptide Elongation Factor 1/genetics , Phylogeny , Species Specificity , Tubulin/genetics
20.
Ophthalmic Res ; 56(3): 145-54, 2016.
Article in English | MEDLINE | ID: mdl-27410056

ABSTRACT

PURPOSE: To determine the risk factors for age-related macular degeneration (AMD) in Algerians, and compare these data with those on North Africans living in Italy. METHODS: All patients over 55 years of age consulting one of the 23 involved Algerian ophthalmologists were invited to participate, and 1,183 patients were included. Data collection was standardized based on the Simplified Théa Risk Assessment Scale (STARS) questionnaire. A similar study was conducted in North Africans living in Italy (n = 1,011). Patients with only soft drusen and/or pigmentary abnormalities were classified as early AMD, and patients with geographic atrophy and/or neovascular AMD were classified as late AMD. RESULTS: In the final multivariate model, risk for early and/or late AMD was significantly increased with older age, family history of AMD, Black ethnicity, atherosclerosis, beer consumption, high fruit consumption, cataract surgery, myopia, and hyperopia. High consumption of green vegetables was associated with lower risk for both early and late AMD. In comparison with North Africans from Italy, Algerians generally had a healthier profile (younger, less obesity, smoking, and cardiovascular diseases, and higher consumption of fruits and vegetables) and a lower risk for AMD. CONCLUSION: This study documents risk factors for AMD in North-African populations for the first time.


Subject(s)
Ethnicity , Macular Degeneration/ethnology , Risk Assessment , Africa, Northern/ethnology , Aged , Aged, 80 and over , Algeria/epidemiology , Female , Humans , Incidence , Italy/epidemiology , Macular Degeneration/diagnosis , Male , Middle Aged , Retrospective Studies , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...