Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Transl Immunology ; 11(5): e1392, 2022.
Article in English | MEDLINE | ID: mdl-35573979

ABSTRACT

Objective: Antitumor viral vaccines, and more particularly poxviral vaccines, represent an active field for clinical development and translational research. To improve the efficacy and treatment outcome, new viral vectors are sought, with emphasis on their abilities to stimulate innate immunity, to display tumor antigens and to induce a specific T-cell response. Methods: We screened for a new poxviral backbone with improved innate and adaptive immune stimulation using IFN-α secretion levels in infected PBMC cultures as selection criteria. Assessment of virus effectiveness was made in vitro and in vivo. Results: The bovine pseudocowpox virus (PCPV) stood out among several poxviruses for its ability to induce significant secretion of IFN-α. PCPV produced efficient activation of human monocytes and dendritic cells, degranulation of NK cells and reversed MDSC-induced T-cell suppression, without being offensive to activated T cells. A PCPV-based vaccine, encoding the HPV16 E7 protein (PCPV-E7), stimulated strong antigen-specific T-cell responses in TC1 tumor-bearing mice. Complete regression of tumors was obtained in a CD8+ T-cell-dependent manner after intratumoral injection of PCPV-E7, followed by intravenous injection of the cancer vaccine MVA-E7. PCPV also proved active when injected repeatedly intratumorally in MC38 tumor-bearing mice, generating tumor-specific T-cell responses without encoding a specific MC38 antigen. From a translational perspective, we demonstrated that PCPV-E7 effectively stimulated IFN-γ production by T cells from tumor-draining lymph nodes of HPV+-infected cancer patients. Conclusion: We propose PCPV as a viral vector suitable for vaccination in the field of personalised cancer vaccines, in particular for heterologous prime-boost regimens.

2.
Mol Ther Oncolytics ; 19: 57-66, 2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33072863

ABSTRACT

Oncolytic virotherapy is a promising therapeutic approach for the treatment of cancer. TG6002 is a recombinant oncolytic vaccinia virus deleted in the thymidine kinase and ribonucleotide reductase genes and armed with the suicide gene FCU1, which encodes a bifunctional chimeric protein that efficiently catalyzes the direct conversion of the nontoxic 5-fluorocytosine into the toxic metabolite 5-fluorouracil. In translational research, canine tumors and especially mammary cancers are relevant surrogates for human cancers and can be used as preclinical models. Here, we report that TG6002 is able to replicate in canine tumor cell lines and is oncolytic in such cells cultured in 2D or 3D as well as canine mammary tumor explants. Furthermore, intratumoral injections of TG6002 lead to inhibition of the proliferation of canine tumor cells grafted into mice. 5-fluorocytosine treatment of mice significantly improves the anti-tumoral activity of TG6002 infection, a finding that can be correlated with its conversion into 5-fluorouracil within infected fresh canine tumor biopsies. In conclusion, our study suggests that TG6002 associated with 5-fluorocytosine is a promising therapy for human and canine cancers.

3.
BMC Vet Res ; 16(1): 307, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32843040

ABSTRACT

BACKGROUND: Cancer is a leading cause of mortality for both humans and dogs. As spontaneous canine cancers appear to be relevant models of human cancers, developing new therapeutic approaches could benefit both species. Oncolytic virotherapy is a promising therapeutic approach in cancer treatment. TG6002 is a recombinant oncolytic vaccinia virus deleted in the thymidine kinase and ribonucleotide reductase genes and armed with the suicide gene FCU1 that encodes a protein which catalyses the conversion of the non-toxic 5-fluorocytosine into the toxic metabolite 5-fluorouracil. Previous studies have shown the ability of TG6002 to infect and replicate in canine tumor cell lines, and demonstrated its oncolytic potency in cell lines, xenograft models and canine mammary adenocarcinoma explants. Moreover, 5-fluorouracil synthesis has been confirmed in fresh canine mammary adenocarcinoma explants infected with TG6002 with 5-fluorocytosine. This study aims at assessing the safety profile and viral shedding after unique or repeated intramuscular injections of TG6002 in seven healthy Beagle dogs. RESULTS: Repeated intramuscular administrations of TG6002 at the dose of 5 × 107 PFU/kg resulted in no clinical or biological adverse effects. Residual TG6002 in blood, saliva, urine and feces of treated dogs was not detected by infectious titer assay nor by qPCR, ensuring the safety of the virus in the dogs and their environment. CONCLUSIONS: These results establish the good tolerability of TG6002 in healthy dogs with undetectable viral shedding after multiple injections. This study supports the initiation of further studies in canine cancer patients to evaluate the oncolytic potential of TG6002 and provides critical data for clinical development of TG6002 as a human cancer therapy.


Subject(s)
Biological Products/administration & dosage , Oncolytic Viruses/isolation & purification , Vaccinia virus/isolation & purification , Virus Shedding , Animals , Biological Products/adverse effects , Dogs , Injections, Intramuscular/veterinary , Male , Oncolytic Virotherapy
4.
J Virol ; 93(11)2019 06 01.
Article in English | MEDLINE | ID: mdl-30918073

ABSTRACT

In this article we report that the M2 protein encoded by the vaccinia virus is secreted as a homo-oligomer by infected cells and binds two central costimulation molecules, CD80 (B7-1) and CD86 (B7-2). These interactions block the ligation of the two B7 proteins to both soluble CD28 and soluble cytotoxic T-lymphocyte associated protein 4 (CTLA4) but favor the binding of soluble PD-L1 to soluble CD80. M2L gene orthologues are found in several other poxviruses, and the B7-CD28/CTLA4 blocking activity has been identified for several culture supernatants of orthopoxvirus-infected cells and for a recombinant myxoma virus M2 protein homolog (i.e., Gp120-like protein, or Gp120LP). Overall, these data indicate that the M2 poxvirus family of proteins may be involved in immunosuppressive activities broader than the NF-κB inhibition already reported (R. Gedey, X. L. Jin, O. Hinthong, and J. L. Shisler, J Virol 80:8676-8685, 2006, https://doi.org/10.1128/JVI.00935-06). A Copenhagen vaccinia virus with a deletion of the nonessential M2L locus was generated and compared with its parental virus. This M2L-deleted vaccinia virus, unlike the parental virus, does not generate interference with the B7-CD28/CTLA4/PD-L1 interactions. Moreover, this deletion did not affect any key features of the virus (in vitro replication, oncolytic activities in vitro and in vivo, and intratumoral expression of a transgene in an immunocompetent murine model). Altogether, these first results suggest that the M2 protein has the potential to be used as a new immunosuppressive biotherapeutic and that the M2L-deleted vaccinia virus represents an attractive new oncolytic platform with an improved immunological profile.IMPORTANCE The vaccinia virus harbors in its genome several genes dedicated to the inhibition of the host immune response. Among them, M2L was reported to inhibit the intracellular NF-κB pathway. We report here several new putative immunosuppressive activities of M2 protein. M2 protein is secreted and binds cornerstone costimulatory molecules (CD80/CD86). M2 binding to CD80/CD86 blocks their interaction with soluble CD28/CTLA4 but also favors the soluble PD-L1-CD80 association. These findings open the way for new investigations deciphering the immune system effects of soluble M2 protein. Moreover, a vaccinia virus with a deletion of its M2L has been generated and characterized as a new oncolytic platform. The replication and oncolytic activities of the M2L-deleted vaccinia virus are indistinguishable from those of the parental virus. More investigations are needed to characterize in detail the immune response triggered against both the tumor and the virus by this M2-defective vaccinia virus.


Subject(s)
B7-1 Antigen/metabolism , B7-H1 Antigen/metabolism , Vaccinia virus/metabolism , Animals , Antigens, CD/metabolism , B7-1 Antigen/genetics , B7-2 Antigen/genetics , B7-2 Antigen/metabolism , CD28 Antigens/metabolism , CTLA-4 Antigen/metabolism , Cell Adhesion Molecules , Cell Line , Chick Embryo , Humans , Immunoconjugates , Interleukin-2/metabolism , Lymphocyte Activation/immunology , Membrane Glycoproteins/metabolism , Mice , NF-kappa B/metabolism , Vaccinia/genetics , Vaccinia/metabolism , Vaccinia virus/genetics , Viral Proteins/metabolism
5.
Hum Vaccin Immunother ; 14(1): 140-145, 2018 01 02.
Article in English | MEDLINE | ID: mdl-28925793

ABSTRACT

TG4010, a Modified Vaccinia virus Ankara (MVA) expressing human mucin1 (MUC1) has demonstrated clinical benefit for patients suffering from advanced non-small cell lung cancer (NSCLC) in combination with chemotherapy. To support its development, preclinical experiments were performed with either TG4010 or ß-galactosidase-encoding MVA vector (MVA-ßgal) in mice presenting tumors in the lung. Tumor growth was obtained after intravenous injection of CT26 murine colon cancer cells, engineered to express either MUC1 or ßgal. Mice showed increased survival rates after repeated intravenous injections of TG4010 or MVA-ßgal, compared to an empty MVA control vector. Treatment with MVA vectors led to the accumulation of CD3dimCD8dim T cells, with two subpopulations characterized as KLRG1+CD127- short-lived effector cells (SLECs), and KLRG1-CD127- early effector cells (EECs) comprising cells releasing IFNγ, Granzyme B and CD107a upon antigen-specific peptide stimulation. EECs were characterized by an up-regulation of PD-1. Tumor growth in the diseased lung correlated with the appearance of PD1+ Treg cells that partially disappeared after TG4010 treatment. At late stage of tumor development in the lung, PD-L1 was detected on CD45- tumor cells, on CD4+ cells, including Treg cells, on CD3+CD8+ and CD3dimCD8dim T lymphocytes, on NK cells, on MDSCs and on alveolar macrophages. We demonstrated that targeting the PD-1/PD-L1 pathway with blocking monoclonal antibodies several days after TG4010 treatment, at late stage of tumor development, enhanced the therapeutic protection induced by the vaccine, supporting the ongoing clinical evaluation of TG4010 immunotherapy in combination with Nivolumab.


Subject(s)
Antineoplastic Agents, Immunological/administration & dosage , Cancer Vaccines/administration & dosage , Carcinoma, Non-Small-Cell Lung/therapy , Immunotherapy/methods , Membrane Glycoproteins/administration & dosage , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Vaccinia virus/immunology , Animals , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/mortality , Cell Line, Tumor , Combined Modality Therapy/methods , Injections, Intravenous , Mice , Mice, Inbred BALB C , Mucin-1/immunology , Nivolumab/administration & dosage , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Treatment Outcome , Xenograft Model Antitumor Assays
6.
J Immunother Cancer ; 5(1): 70, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28923084

ABSTRACT

BACKGROUND: Advanced non-small cell lung cancer patients receiving TG4010, a therapeutic viral vaccine encoding human Mucin 1 and interleukin-2 in addition to standard chemotherapy, displayed longer overall survival in comparison to that of patients treated with standard chemotherapy alone. Our study intended to establish the association between overall survival and vaccine-induced T cell responses against tumor associated antigens (TAA) targeted by the vaccine. METHOD: The TIME trial was a placebo-controlled, randomized phase II study aimed at assessing efficacy of TG4010 with chemotherapy in NSCLC. 78 patients from the TIME study carrying the HLA-A02*01 haplotype were analyzed using combinatorial encoding of MHC multimers to detect low frequencies of cellular immune responses to TG4010 and other unrelated TAA. RESULTS: We report that improvement of survival under TG4010 treatment correlated with development of T cell responses against MUC1. Interestingly, responses against MUC1 were associated with broadening of CD8 responses against non-targeted TAA, thus demonstrating induction of epitope spreading. CONCLUSION: Our results support the causality of specific T-cell response in improved survival in NSCLC. Additionally, vaccine induced epitope spreading to other TAA participates to the enrichment of the diversity of the anti-tumor response. Hence, TG4010 appears as a useful therapeutic option to maximize response rate and clinical benefit in association with other targeted immuno-modulators. TRIAL REGISTRATION: Registered on ClinicalTrials.gov under identifier NCT01383148 on June 23rd, 2011.


Subject(s)
Antigens, Neoplasm/metabolism , Cancer Vaccines/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Membrane Glycoproteins/therapeutic use , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Double-Blind Method , HLA-A2 Antigen/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Mucin-1/metabolism , Survival Analysis , T-Lymphocytes/immunology , Treatment Outcome
7.
Cancer Res ; 77(15): 4146-4157, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28536278

ABSTRACT

Athough the clinical efficacy of oncolytic viruses has been demonstrated for local treatment, the ability to induce immune-mediated regression of distant metastases is still poorly documented. We report here that the engineered oncolytic vaccinia virus VVWR-TK-RR--Fcu1 can induce immunogenic cell death and generate a systemic immune response. Effects on tumor growth and survival was largely driven by CD8+ T cells, and immune cell infiltrate in the tumor could be reprogrammed toward a higher ratio of effector T cells to regulatory CD4+ T cells. The key role of type 1 IFN pathway in oncolytic virotherapy was also highlighted, as we observed a strong abscopal response in Ifnar-/- tumors. In this model, single administration of virus directly into the tumors on one flank led to regression in the contralateral flank. Moreover, these effects were further enhanced when oncolytic treatment was combined with immunogenic chemotherapy or with immune checkpoint blockade. Taken together, our results suggest how to safely improve the efficacy of local oncolytic virotherapy in patients whose tumors are characterized by dysregulated IFNα signaling. Cancer Res; 77(15); 4146-57. ©2017 AACR.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Interferon-alpha/antagonists & inhibitors , Neoplasms, Experimental/therapy , Oncolytic Virotherapy/methods , Animals , B7-H1 Antigen/antagonists & inhibitors , CTLA-4 Antigen/antagonists & inhibitors , Cell Line, Tumor , Disease Models, Animal , Flow Cytometry , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Oncolytic Viruses , Organoplatinum Compounds/pharmacology , Oxaliplatin , Receptor, Interferon alpha-beta/metabolism , Vaccinia virus
SELECTION OF CITATIONS
SEARCH DETAIL
...