Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 308(Pt 1): 136111, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35995190

ABSTRACT

Occurrence of microplastics (MPs) in freshwater environments, particularly reservoir and lakes, is an emerging concern. There are limited studies in Pakistan on microplastic pollution in the lacustrine environments and those that exist do not provide sufficient information on the spatial distribution of MPs in offshore surface water. The aims of this study were to determine microplastic abundance in Rawal Lake, Pakistan and to ascertain if sampling methodology influences microplastic counts. Surface water samples were collected from 10 sites; 5 tributaries, 2 human settlement and 3 fishing and boating areas using two different sampling techniques: 100 µm mesh trawl and 20 L sample through a 45 µm mesh sieve. A significant difference was observed in the abundance of MPs across two methods with the sieve method yielding 2.8 ± 1.44 particles/L and trawl yielding 0.025 ± 0.024 particles/L. Tributaries and boating/fishing area had higher microplastic abundance than the residential area regardless of sampling method. Filaments were the dominant shape of MPs in both type of samples followed by fragments in trawl samples and films in sieved samples. Microbeads were only detected in trawl samples. MPs within size range 0.1-0.9 mm were mostly fragments (82%). MPs were diverse in colors with white/transparent and black MPs common. Polypropylene was the main type of microplastic in Rawal Lake (40-74%). Scanning Electron Microscopy (SEM) of MPs showed cracks, roughness and striations on the particles. Energy Dispersive Spectroscopy (EDS) detected heavy metals (Fe, Cu, Ni, Pb, Zn, Co and Cr) in MPs. Findings suggest that microplastic pollution in Rawal Lake may pose great risk to aquatic and human life through leaching of inherent/adsorbed heavy metals and therefore requires future investigation.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Environmental Monitoring , Geologic Sediments , Humans , Lakes/chemistry , Lead/analysis , Metals, Heavy/analysis , Microplastics , Pakistan , Plastics , Polypropylenes/analysis , Water/analysis , Water Pollutants, Chemical/analysis
2.
Environ Toxicol Pharmacol ; 94: 103912, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35724858

ABSTRACT

This study evaluates the toxicity of pristine (Unwashed) and aged, clean (Biofilm-) or fouled (Biofilm+), PS microspheres (3 µm,10 µm), using Washed particles as a reference material, on selective and continuous larval culture of Amphibalanus amphitrite. Exposure to 3 µm Unwashed and Biofilm+ particles for 24 h induced significant mortality (60 % and 57 % respectively) in stage II larvae. Stage II and VI nauplii showed greater uptake of 3 µm Biofilm- particles. Accumulative exposure to microplastics in continuous larval culture significantly affected the naupliar survival, particularly of stage III and IV. Cumulative mortality was > 70% after exposure to 3 µm Unwashed and 10 µm Biofilm+ particles. Unwashed particles with increasing concentration and aged particles with increasing size, delayed the development of nauplii to cyprids. Though,> 50% cyprids showed successful settlement however the highest concentration of 3 µm Biofilm+ microspheres inhibited the settlement and induced precocious metamorphosis in 9 % of the cyprids.


Subject(s)
Thoracica , Animals , Larva , Microplastics/toxicity , Plastics/toxicity , Polystyrenes/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...