Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673088

ABSTRACT

The aluminum strength-to-weight ratio has become a highly significant factor in industrial applications. Placing stiffening ribs along the surface can significantly improve the panel's resistance to bending and compression in aluminum alloys. This study used single-point incremental forming (SPIF) to fabricate stiffening ribs for 1 mm and 3 mm thick aluminum alloy EN AW-2024-T3 sheets. A universal compression machine was used to investigate sheet deformation. The resulting deformation was examined using non-contact digital image correlation (DIC) based on several high-resolution cameras. The results showed that deformation progressively escalated from the edges toward the center, and the highest buckling values were confined within the non-strengthened area. Specimens with a larger thickness (3 mm) showed better effectiveness against buckling and bending for each applied load: 8 kN or 10 kN. Additionally, the displacement from the sheet surface decreased by 60% for sheets 3 mm thick and by half for sheets 1 mm thick, which indicated that thicker sheets could resist deformation better.

2.
Materials (Basel) ; 17(1)2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38203939

ABSTRACT

The paper presents the numerical and experimental results of research aimed at determining the influence of hardness in the range of 50-90 Shore A of layered tools composed of elastomeric materials on the possibility of forming Inconel 625 nickel-based alloy sheets. A stamping die composed of 90MnCrV8 steel (hardness 60HRC) was designed for forming embosses in drawpieces, ensuring various stress states on the cross-section of the formed element. The principle of operating the stamping die was based on the Guerin method. The finite-element-based numerical modelling of the forming process for various configurations of polyurethane inserts was also carried out. The drawpieces obtained through sheet forming were subjected to geometry tests using optical 3D scanning. The results confirmed that, in the case of forming difficult-to-deform Inconel 625 Ni-based alloy sheets, the hardness of the polyurethane inserts significantly affected the geometric quality of the obtained drawpieces. The assumptions determined in numerical simulations were verified in experimental studies. Based on the test results, it was concluded that the selection of polyurethane hardness should be determined by the shape of the formed element. Significant nonuniform sheet metal deformations were also found, which may pose a problem in the process of designing forming tools and the technology of the plastic forming of Inconel 625 Ni-based alloy sheets.

3.
Sci Adv ; 8(13): eabn3535, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35353557

ABSTRACT

The interest in understanding scaling limits of magnetic textures such as domain walls spans the entire field of magnetism from its physical fundamentals to applications in information technologies. Here, we explore antiferromagnetic CuMnAs in which imaging by x-ray photoemission reveals the presence of magnetic textures down to nanoscale, reaching the detection limit of this established microscopy in antiferromagnets. We achieve atomic resolution by using differential phase-contrast imaging within aberration-corrected scanning transmission electron microscopy. We identify abrupt domain walls in the antiferromagnetic film corresponding to the Néel order reversal between two neighboring atomic planes. Our work stimulates research of magnetic textures at the ultimate atomic scale and sheds light on electrical and ultrafast optical antiferromagnetic devices with magnetic field-insensitive neuromorphic functionalities.

4.
Nat Commun ; 13(1): 724, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35132068

ABSTRACT

Efficient manipulation of antiferromagnetic (AF) domains and domain walls has opened up new avenues of research towards ultrafast, high-density spintronic devices. AF domain structures are known to be sensitive to magnetoelastic effects, but the microscopic interplay of crystalline defects, strain and magnetic ordering remains largely unknown. Here, we reveal, using photoemission electron microscopy combined with scanning X-ray diffraction imaging and micromagnetic simulations, that the AF domain structure in CuMnAs thin films is dominated by nanoscale structural twin defects. We demonstrate that microtwin defects, which develop across the entire thickness of the film and terminate on the surface as characteristic lines, determine the location and orientation of 180∘ and 90∘ domain walls. The results emphasize the crucial role of nanoscale crystalline defects in determining the AF domains and domain walls, and provide a route to optimizing device performance.

5.
Materials (Basel) ; 14(20)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34683809

ABSTRACT

This work examines the effect of thermal modification temperatures in the production of thermally modified wood on the cutting and fracture parameters when cutting heat-treated spruce wood by a circular sawblade machine. The samples were thermally modified at 160, 180, 200, and 220 °C. One sample was unmodified and was used as a reference sample. On the basis of the performed experiments, the fracture parameters (fracture toughness and shear yield strength) were calculated for the axial-perpendicular direction of cutting. In comparison with the theoretical assumptions, the influence of temperature on the cutting and fracture parameters was confirmed. Thermally treated wood is characterized by increased fragility and susceptibility to crack formation, as well as reduced density, bending strength, and shear strength. These properties significantly affect the size of the cutting force and feed force, as well as the fracture parameters. As the temperature increases, the values of these parameters decrease. The mentioned material characteristics could be useful for the optimization of the cutting process, as well as for the issue of energy consumption during the machining of heat-treated wood.

6.
Sci Adv ; 4(3): eaar3566, 2018 03.
Article in English | MEDLINE | ID: mdl-29740601

ABSTRACT

The speed of writing of state-of-the-art ferromagnetic memories is physically limited by an intrinsic gigahertz threshold. Recently, realization of memory devices based on antiferromagnets, in which spin directions periodically alternate from one atomic lattice site to the next has moved research in an alternative direction. We experimentally demonstrate at room temperature that the speed of reversible electrical writing in a memory device can be scaled up to terahertz using an antiferromagnet. A current-induced spin-torque mechanism is responsible for the switching in our memory devices throughout the 12-order-of-magnitude range of writing speeds from hertz to terahertz. Our work opens the path toward the development of memory-logic technology reaching the elusive terahertz band.

7.
Nat Nanotechnol ; 13(5): 362-365, 2018 05.
Article in English | MEDLINE | ID: mdl-29531330

ABSTRACT

Antiferromagnets have several favourable properties as active elements in spintronic devices, including ultra-fast dynamics, zero stray fields and insensitivity to external magnetic fields 1 . Tetragonal CuMnAs is a testbed system in which the antiferromagnetic order parameter can be switched reversibly at ambient conditions using electrical currents 2 . In previous experiments, orthogonal in-plane current pulses were used to induce 90° rotations of antiferromagnetic domains and demonstrate the operation of all-electrical memory bits in a multi-terminal geometry 3 . Here, we demonstrate that antiferromagnetic domain walls can be manipulated to realize stable and reproducible domain changes using only two electrical contacts. This is achieved by using the polarity of the current to switch the sign of the current-induced effective field acting on the antiferromagnetic sublattices. The resulting reversible domain and domain wall reconfigurations are imaged using X-ray magnetic linear dichroism microscopy, and can also be detected electrically. Switching by domain-wall motion can occur at much lower current densities than those needed for coherent domain switching.

8.
Nat Nanotechnol ; 10(1): 50-4, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25383512

ABSTRACT

The interplay between spin, charge and orbital degrees of freedom has led to the development of spintronic devices such as spin-torque oscillators and spin-transfer torque magnetic random-access memories. In this development, spin pumping represents a convenient way to electrically detect magnetization dynamics. The effect originates from direct conversion of low-energy quantized spin waves in the magnet, known as magnons, into a flow of spins from the precessing magnet to adjacent leads. In this case, a secondary spin-charge conversion element, such as heavy metals with large spin Hall angle or multilayer layouts, is required to convert the spin current into a charge signal. Here, we report the experimental observation of charge pumping in which a precessing ferromagnet pumps a charge current, demonstrating direct conversion of magnons into high-frequency currents via the relativistic spin-orbit interaction. The generated electric current, unlike spin currents generated by spin-pumping, can be directly detected without the need of any additional spin-charge conversion mechanism. The charge-pumping phenomenon is generic and gives a deeper understanding of its reciprocal effect, the spin orbit torque, which is currently attracting interest for their potential in manipulating magnetic information.

9.
J Chem Theory Comput ; 8(5): 1714-20, 2012 May 08.
Article in English | MEDLINE | ID: mdl-26593665

ABSTRACT

Surface-enhanced Raman optical activity (SEROA) is a new technique combining the sensitivity of the surface-enhanced Raman scattering (SERS) with the detailed information about molecular structure provided by the chiral spectroscopies. So far, experimental SEROA spectra have been reported in several studies, but the interpretation and theoretical background are rather limited. In this work, general expressions for the electromagnetic contribution to SEROA are derived using the matrix polarization theory and used to investigate the enhancement in model systems. The results not only reveal a strong dependence of the enhancement on the distance between the molecule and a metal part but also the dependence of the ratio of ROA and Raman intensities (circular intensity difference, CID) on the distance and rotational averaging. For a ribose model, an optimal molecule-colloid distance was predicted which provided the highest CIDs. However, the CID maximum disappeared after a rotational averaging. For cysteine zwitterion, the simulated SEROA and SERS spectra provided a qualitative agreement with previous experiments.

10.
Science ; 330(6012): 1801-4, 2010 Dec 24.
Article in English | MEDLINE | ID: mdl-21205664

ABSTRACT

The field of semiconductor spintronics explores spin-related quantum relativistic phenomena in solid-state systems. Spin transistors and spin Hall effects have been two separate leading directions of research in this field. We have combined the two directions by realizing an all-semiconductor spin Hall effect transistor. The device uses diffusive transport and operates without electrical current in the active part of the transistor. We demonstrate a spin AND logic function in a semiconductor channel with two gates. Our study shows the utility of the spin Hall effect in a microelectronic device geometry, realizes the spin transistor with electrical detection directly along the gated semiconductor channel, and provides an experimental tool for exploring spin Hall and spin precession phenomena in an electrically tunable semiconductor layer.

SELECTION OF CITATIONS
SEARCH DETAIL
...