Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 87(12): 125004, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28040921

ABSTRACT

A novel inductive probe, termed MIDOT, was developed for monitoring high-current flat transmission lines. While being inexpensive the probe does not require calibration, is resistant to both shock waves and temperature variations, and it is easy to manufacture and mount. It generates strong output signals that are relatively easy to interpret and has a detection region limited to a pre-defined part of the transmission line. The theoretical background related to the MIDOT probes, together with their practical implementation in both preliminary experimentation and high-current tests, is also presented in the paper. The novel probe can be used to benchmark existing 2D numerical codes used in calculating the current distribution inside the conductors of a transmission line but can also easily detect an early movement of a transmission line component. The probe can also find other applications, such as locating the position of a pulsed current flowing through a thin wire.

2.
Rev Sci Instrum ; 83(3): 035001, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22462950

ABSTRACT

The paper describes a simple and compact 0.5 MV high-voltage capacitive probe developed in common by Université de Pau (France) and Loughborough University (UK). Design details are provided, together with a simple and straightforward methodology developed to assess the characteristics of high-voltage probes. The technique uses a 4 kV pulsed arrangement combined with results from a 2D electric field solver and a thorough PSpice circuit analysis. Finally, a practical example of high-voltage measurement performed using such a probe during the development phase of a high power microwave generator is provided.

3.
Rev Sci Instrum ; 81(10): 104704, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21034107

ABSTRACT

A pulsed power generator based on a high-voltage Tesla transformer which charges a 3.85 Ω/55 ns water-filled pulse forming line to 300 kV has been developed at Loughborough University as a training tool for pulsed power students. The generator uses all forms of insulation specific to pulsed power technology, liquid (oil and water), gas (SF(6)), and magnetic insulation in vacuum, and a number of fast voltage and current sensors are implemented for diagnostic purposes. A miniature (centimeter-size) plasma opening switch has recently been coupled to the output of the pulse forming line, with the overall system comprising the first phase of a program aimed at the development of a novel repetitive, table-top generator capable of producing 15 GW pulses for high power microwave loads. Technical details of all the generator components and the main experimental results obtained during the program and demonstrations of their performance are presented in the paper, together with a description of the various diagnostic tools involved. In particular, it is shown that the miniature plasma opening switch is capable of reducing the rise time of the input current while significantly increasing the load power. Future plans are outlined in the conclusions.

4.
Rev Sci Instrum ; 81(5): 054706, 2010 May.
Article in English | MEDLINE | ID: mdl-20515165

ABSTRACT

High-power applications sometimes require a transportable, simple, and robust gigawatt pulsed power generator, and an analysis of various possible approaches shows that one based on a twin exploding wire array is extremely advantageous. A generator based on this technology and used with a high-energy capacitor bank has recently been developed at Loughborough University. An H-configuration circuit is used, with one pair of diagonally opposite arms each comprising a high-voltage ballast inductor and the other pair exploding wire arrays capable of generating voltages up to 300 kV. The two center points of the H configuration provide the output to the load, which is coupled through a high-voltage self-breakdown spark gap, with the entire autonomous source being housed in a metallic container. Experimentally, a load resistance of a few tens of Ohms is provided with an impulse of more than 300 kV, having a rise time of about 140 ns and a peak power of over 1.7 GW. Details of the experimental arrangement and typical results are presented and diagnostic measurements of the current and voltage output are shown to compare well with theoretical predictions based on detailed numerical modeling. Finally, the next stage toward developing a more powerful and energetic transportable source is outlined.

SELECTION OF CITATIONS
SEARCH DETAIL
...