Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37299312

ABSTRACT

In recent years, polymeric materials have been gaining prominence in studies of controlled release systems to obtain improvements in drug administration. These systems present several advantages compared with conventional release systems, such as constant maintenance in the blood concentration of a given drug, greater bioavailability, reduction of adverse effects, and fewer dosages required, thus providing a higher patient compliance to treatment. Given the above, the present work aimed to synthesize polymeric matrices derived from polyethylene glycol (PEG) capable of promoting the controlled release of the drug ketoconazole in order to minimize its adverse effects. PEG 4000 is a widely used polymer due to its excellent properties such as hydrophilicity, biocompatibility, and non-toxic effects. In this work, PEG 4000 and derivatives were incorporated with ketoconazole. The morphology of polymeric films was observed by AFM and showed changes on the film organization after drug incorporation. In SEM, it was possible to notice spheres that formed in some incorporated polymers. The zeta potential of PEG 4000 and its derivatives was determined and suggested that the microparticle surfaces showed a low electrostatic charge. Regarding the controlled release, all the incorporated polymers obtained a controlled release profile at pH 7.3. The release kinetics of ketoconazole in the samples of PEG 4000 and its derivatives followed first order for PEG 4000 HYDR INCORP and Higuchi for the other samples. Cytotoxicity was determined and PEG 4000 and its derivatives were not cytotoxic.

2.
Pharm Dev Technol ; 18(5): 1035-41, 2013.
Article in English | MEDLINE | ID: mdl-22200091

ABSTRACT

Benznidazole (BNZ) is the primary chemotherapeutic agent for treating Chagas' disease; however, its poor water solubility and irregular oral absorption lead to the treatment failure in the chronic phase. The aim of this work was to investigate the utility of the polymer hydroxypropyl methylcellulose (HPMC) in controlling the release of BNZ from solid inclusion complexes with cyclodextrin to overcome the problem of its bioavailability. Preliminary studies of solubility were conducted in solution using selected ß-cyclodextrin derivatives according to an experimental mixture design. The best cyclodextrin composition was used to produce solid-state systems by kneading in the presence or absence of HPMC. The formulations were characterized by different physico-chemical techniques, including the dissolution rate. Hydroxypropyl-ß-cyclodextrin (HPßCD) produced the greatest improvement in drug solubility and was selected for the development of solid systems. Assays confirmed the production of true inclusion complexes between BNZ and HPßCD. The dissolution rate of the BNZ-HPßCD system was markedly increased, while the presence of HPMC retarded drug release. An optimal formulation obtained by the combination of kneading systems developed in appropriate ratios could be a promising drug delivery system with a prolonged therapeutic effect coupled with more balanced bioavailability. The produced systems present interesting perspectives for Chagas' therapy.


Subject(s)
Nitroimidazoles/chemistry , Polymers/chemistry , beta-Cyclodextrins/chemistry , 2-Hydroxypropyl-beta-cyclodextrin , Biological Availability , Cellulose/analogs & derivatives , Cellulose/chemistry , Chagas Disease/drug therapy , Chemistry, Pharmaceutical/methods , Hydrophobic and Hydrophilic Interactions , Nitroimidazoles/pharmacology , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...