Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Biochem Genet ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649558

ABSTRACT

Hepatoblastoma stands as the most prevalent liver cancer in the pediatric population. Characterized by a low mutational burden, chromosomal and epigenetic alterations are key drivers of its tumorigenesis. Transcriptome analysis is a powerful tool for unraveling the molecular intricacies of hepatoblastoma, shedding light on the effects of genetic and epigenetic changes on gene expression. In this study conducted in Brazilian patients, an in-depth whole transcriptome analysis was performed on 14 primary hepatoblastomas, compared to control liver tissues. The analysis unveiled 1,492 differentially expressed genes (1,031 upregulated and 461 downregulated), including 920 protein-coding genes (62%). Upregulated biological processes were linked to cell differentiation, signaling, morphogenesis, and development, involving known hepatoblastoma-associated genes (DLK1, MEG3, HDAC2, TET1, HMGA2, DKK1, DKK4), alongside with novel findings (GYNG4, CDH3, and TNFRSF19). Downregulated processes predominantly centered around oxidation and metabolism, affecting amines, nicotinamides, and lipids, featuring novel discoveries like the repression of SYT7, TTC36, THRSP, CCND1, GCK and CAMK2B. Two genes, which displayed a concordant pattern of DNA methylation alteration in their promoter regions and dysregulation in the transcriptome, were further validated by RT-qPCR: the upregulated TNFRSF19, a key gene in the embryonic development, and the repressed THRSP, connected to lipid metabolism. Furthermore, based on protein-protein interaction analysis, we identified genes holding central positions in the network, such as HDAC2, CCND1, GCK, and CAMK2B, among others, that emerged as prime candidates warranting functional validation in future studies. Notably, a significant dysregulation of non-coding RNAs (ncRNAs), predominantly upregulated transcripts, was observed, with 42% of the top 50 highly expressed genes being ncRNAs. An integrative miRNA-mRNA analysis revealed crucial biological processes associated with metabolism, oxidation reactions of lipids and carbohydrates, and methylation-dependent chromatin silencing. In particular, four upregulated miRNAs (miR-186, miR-214, miR-377, and miR-494) played a pivotal role in the network, potentially targeting multiple protein-coding transcripts, including CCND1 and CAMK2B. In summary, our transcriptome analysis highlighted disrupted embryonic development as well as metabolic pathways, particularly those involving lipids, emphasizing the emerging role of ncRNAs as epigenetic regulators in hepatoblastomas. These findings provide insights into the complexity of the hepatoblastoma transcriptome and identify potential targets for future therapeutic interventions.

2.
Pediatr Res ; 95(5): 1346-1355, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38182823

ABSTRACT

BACKGROUND: Childhood cancer has a poorly known etiology, and investigating the underlying genetic background may provide novel insights. A recognized association exists between non-chromosomal birth defects and childhood cancer susceptibility. METHODS: We performed whole-exome sequencing and chromosomal microarray analysis in a cohort of childhood cancer (22 individuals, 50% with congenital anomalies) to unravel deleterious germline variants. RESULTS: A diagnostic yield of 14% was found, encompassing heterozygous variants in bona fide dominant Cancer Predisposition Genes (CPGs). Considering candidate and recessive CPGs harboring monoallelic variants, which were also deemed to play a role in the phenotype, the yield escalated to 45%. Most of the deleterious variants were mapped in genes not conventionally linked to the patient's tumor type. Relevant findings were detected in 55% of the syndromic individuals, mostly variants potentially underlying both phenotypes. CONCLUSION: We uncovered a remarkable prevalence of germline deleterious CPG variants, highlighting the significance of a comprehensive genetic analysis in pediatric cancer, especially when coupled with additional clinical signs. Moreover, our findings emphasized the potential for oligogenic inheritance, wherein multiple genes synergistically increase cancer risk. Lastly, our investigation unveiled potentially novel genotype-phenotype associations, such as SETD5 in neuroblastoma, KAT6A in gliomas, JAG1 in hepatoblastomas, and TNFRSF13B in Langerhans cell histiocytosis. IMPACT: Novel gene-phenotype associations and candidate genes for pediatric cancer were unraveled, such as KAT6A in gliomas, SETD5 in neuroblastoma, JAG1 in hepatoblastomas, and TNFRSF13B in Langerhans cell histiocytosis. Our analysis revealed a high frequency of deleterious germline variants, particularly in cases accompanied by additional clinical signs, highlighting the importance of a comprehensive genetic evaluation in childhood cancer. Our findings also underscored the potential for oligogenic inheritance in pediatric cancer risk. Understanding the cancer etiology is crucial for genetic counseling, often influencing therapeutic decisions and offering valuable insights into molecular targets for the development of oncological therapies.

3.
J Dev Orig Health Dis ; 14(1): 140-145, 2023 02.
Article in English | MEDLINE | ID: mdl-36154949

ABSTRACT

The multifactorial etiology of pediatric cancer is poorly understood. Environmental factors occurring during embryogenesis can disrupt epigenetic signaling, resulting in several diseases after birth, including cancer. Associations between assisted reproductive technologies (ART), such as in vitro fertilization (IVF), and birth defects, imprinting disorders and other perinatal adverse events have been reported. IVF can result in methylation changes in the offspring, and a link with pediatric cancer has been suggested. In this study, we investigated the peripheral blood methylomes of 11 patients conceived by IVF who developed cancer in childhood. Methylation data of patients and paired sex/aged controls were obtained using the Infinium MethylationEPIC Kit (Illumina). We identified 25 differentially methylated regions (DMRs), 17 of them hypermethylated, and 8 hypomethylated in patients. The most significant DMR was a hypermethylated genomic segment located in the promoter region of LHX6, a transcription factor involved in the forebrain development and interneuron migration during embryogenesis. An additional control group was included to verify the LHX6 methylation status in children with similar cancers who were not conceived by ART. The higher LHX6 methylation levels in IVF patients compared to both control groups (healthy children and children conceived naturally who developed similar pediatric cancers), suggested that hypermethylation at the LHX6 promoter could be due to the IVF process and not secondary to the cancer itself. Further studies are required to evaluate this association and the potential role of LHX6 promoter hypermethylation for tumorigenesis.


Subject(s)
DNA Methylation , Fertilization , Child , Female , Humans , Pregnancy , Fertilization in Vitro/adverse effects , LIM-Homeodomain Proteins/genetics , Nerve Tissue Proteins/genetics , Promoter Regions, Genetic , Reproductive Techniques, Assisted/adverse effects , Transcription Factors/genetics
4.
Biomedicines ; 10(12)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36551847

ABSTRACT

Cancer is one of the leading causes of death in children and adolescents worldwide; among the types of liver cancer, hepatoblastoma (HBL) is the most common in childhood. Although it affects only two to three individuals in a million, it is mostly asymptomatic at diagnosis, so by the time it is detected it has already advanced. There are specific recommendations regarding HBL treatment, and ongoing studies to stratify the risks of HBL, understand the pathology, and predict prognostics and survival rates. Although magnetic resonance imaging spectroscopy is frequently used in diagnostics of HBL, high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy of HBL tissues is scarce. Using this technique, we studied the alterations among tissue metabolites of ex vivo samples from (a) HBL and non-cancer liver tissues (NCL), (b) HBL and adjacent non-tumor samples, and (c) two regions of the same HBL samples, one more centralized and the other at the edge of the tumor. It was possible to identify metabolites in HBL, then metabolites from the HBL center and the border samples, and link them to altered metabolisms in tumor tissues, highlighting their potential as biochemical markers. Metabolites closely related to liver metabolisms such as some phospholipids, triacylglycerides, fatty acids, glucose, and amino acids showed differences between the tissues.

5.
Front Genet ; 13: 858396, 2022.
Article in English | MEDLINE | ID: mdl-35495172

ABSTRACT

The ultrarare hepatoblastoma (HB) is the most common pediatric liver cancer. HB risk is related to a few rare syndromes, and the molecular bases remain elusive for most cases. We investigated the burden of rare damaging germline variants in 30 Brazilian patients with HB and the presence of additional clinical signs. A high frequency of prematurity (20%) and birth defects (37%), especially craniofacial (17%, including craniosynostosis) and kidney (7%) anomalies, was observed. Putative pathogenic or likely pathogenic monoallelic germline variants mapped to 10 cancer predisposition genes (CPGs: APC, CHEK2, DROSHA, ERCC5, FAH, MSH2, MUTYH, RPS19, TGFBR2 and VHL) were detected in 33% of the patients, only 40% of them with a family history of cancer. These findings showed a predominance of CPGs with a known link to gastrointestinal/colorectal and renal cancer risk. A remarkable feature was an enrichment of rare damaging variants affecting different classes of DNA repair genes, particularly those known as Fanconi anemia genes. Moreover, several potentially deleterious variants mapped to genes impacting liver functions were disclosed. To our knowledge, this is the largest assessment of rare germline variants in HB patients to date, contributing to elucidate the genetic architecture of HB risk.

6.
Front Oncol ; 11: 741526, 2021.
Article in English | MEDLINE | ID: mdl-34956867

ABSTRACT

Hepatoblastoma (HB) is a rare embryonal tumor, although it is the most common pediatric liver cancer. The aim of this study was to provide an accurate cytogenomic profile of this type of cancer, for which information in cancer databases is lacking. We performed an extensive literature review of cytogenetic studies on HBs disclosing that the most frequent copy number alterations (CNAs) are gains of 1q, 2/2q, 8/8q, and 20; and losses at 1p and 4q. Furthermore, the CNA profile of a Brazilian cohort of 26 HBs was obtained by array-CGH; the most recurrent CNAs were the same as shown in the literature review. Importantly, HBs from female patients, high-risk stratification tumors, tumors who developed in older patients (> 3 years at diagnosis) or from patients with metastasis and/or deceased carried a higher diversity of chromosomal alterations, specifically chromosomal losses at 1p, 4, 11q and 18q. In addition, we distinguished three major CNA profiles: no detectable CNA, few CNAs and tumors with complex genomes. Tumors with simpler genomes exhibited a significant association with the epithelial fetal subtype of HBs; in contrast, the complex genome group included three cases with epithelial embryonal histology, as well as the only HB with HCC features. A significant association of complex HB genomes was observed with older patients who developed high-risk tumors, metastasis, and deceased. Moreover, two patients with HBs exhibiting complex genomes were born with congenital anomalies. Together, these findings suggest that a high load of CNAs, mainly chromosomal losses, particularly losses at 1p and 18, increases the tendency to HB aggressiveness. Additionally, we identified six hot-spot chromosome regions most frequently affected in the entire group: 1q31.3q42.3, 2q23.3q37.3, and 20p13p11.1 gains, besides a 5,3 Mb amplification at 2q24.2q24.3, and losses at 1p36.33p35.1, 4p14 and 4q21.22q25. An in-silico analysis using the genes mapped to these six regions revealed several enriched biological pathways such as ERK Signaling, MicroRNAs in Cancer, and the PI3K-Akt Signaling, in addition to the WNT Signaling pathway; further investigation is required to evaluate if disturbances of these pathways can contribute to HB tumorigenesis. The analyzed gene set was found to be associated with neoplasms, abnormalities of metabolism/homeostasis and liver morphology, as well as abnormal embryonic development and cytokine secretion. In conclusion, we have provided a comprehensive characterization of the spectrum of chromosomal alterations reported in HBs and identified specific genomic regions recurrently altered in a Brazilian HB group, pointing to new biological pathways, and relevant clinical associations.

7.
Tumour Biol ; 42(12): 1010428320977124, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33256542

ABSTRACT

Hepatoblastomas exhibit the lowest mutational burden among pediatric tumors. We previously showed that epigenetic disruption is crucial for hepatoblastoma carcinogenesis. Our data revealed hypermethylation of nicotinamide N-methyltransferase, a highly expressed gene in adipocytes and hepatocytes. The expression pattern and the role of nicotinamide N-methyltransferase in pediatric liver tumors have not yet been explored, and this study aimed to evaluate the effect of nicotinamide N-methyltransferase hypermethylation in hepatoblastomas. We evaluated 45 hepatoblastomas and 26 non-tumoral liver samples. We examined in hepatoblastomas if the observed nicotinamide N-methyltransferase promoter hypermethylation could lead to dysregulation of expression by measuring mRNA and protein levels by real-time quantitative polymerase chain reaction, immunohistochemistry, and Western blot assays. The potential impact of nicotinamide N-methyltransferase changes was evaluated on the metabolic profile by high-resolution magic angle spinning nuclear magnetic resonance spectroscopy. Significant nicotinamide N-methyltransferase downregulation was revealed in hepatoblastomas, with two orders of magnitude lower nicotinamide N-methyltransferase expression in tumor samples and hepatoblastoma cell lines than in hepatocellular carcinoma cell lines. A specific TSS1500 CpG site (cg02094283) of nicotinamide N-methyltransferase was hypermethylated in tumors, with an inverse correlation between its methylation level and nicotinamide N-methyltransferase expression. A marked global reduction of the nicotinamide N-methyltransferase protein was validated in tumors, with strong correlation between gene and protein expression. Of note, higher nicotinamide N-methyltransferase expression was statistically associated with late hepatoblastoma diagnosis, a known clinical variable of worse prognosis. In addition, untargeted metabolomics analysis detected aberrant lipid metabolism in hepatoblastomas. Data presented here showed the first evidence that nicotinamide N-methyltransferase reduction occurs in hepatoblastomas, providing further support that the nicotinamide N-methyltransferase downregulation is a wide phenomenon in liver cancer. Furthermore, this study unraveled the role of DNA methylation in the regulation of nicotinamide N-methyltransferase expression in hepatoblastomas, in addition to evaluate the potential effect of nicotinamide N-methyltransferase reduction in the metabolism of these tumors. These preliminary findings also suggested that nicotinamide N-methyltransferase level may be a potential prognostic biomarker for hepatoblastoma.


Subject(s)
DNA Methylation , Down-Regulation , Hepatoblastoma/genetics , Liver Neoplasms/genetics , Nicotinamide N-Methyltransferase/genetics , Promoter Regions, Genetic/genetics , Adolescent , Cell Line, Tumor , Child , Child, Preschool , Female , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Hepatoblastoma/metabolism , Hepatoblastoma/pathology , Humans , Infant , Infant, Newborn , Kaplan-Meier Estimate , Liver/metabolism , Liver/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Metabolomics/methods , Nicotinamide N-Methyltransferase/metabolism
9.
Mol Genet Genomic Med ; 8(4): e1133, 2020 04.
Article in English | MEDLINE | ID: mdl-32073752

ABSTRACT

BACKGROUND: Bloom syndrome (BS) is a rare autosomal recessive chromosome instability disorder. The main clinical manifestations are growth deficiency, telangiectasic facial erythema, immunodeficiency, and increased risk to develop neoplasias at early age. Cytogenetic test for sister chromatid exchanges (SCEs) is used as a diagnostic marker for BS. In addition, most patients also present mutations in the BLM gene, related to defects in the DNA repair mechanism. However, the molecular mechanism behind the pathogenicity of BS is still not completely understood. METHODS: We describe two patients confirmed with BS by SCE and molecular analysis. Also, we performed the gene expression profile by the RNA-seq methodology in mRNA transcripts for differential gene expression analysis using as a biological condition for comparison BS versus health controls. RESULTS: We detected 216 differentially expressed genes related to immunological pathways such as positive regulation and activation of B cells, immune effector process and absence of difference of DNA repair genes expression. In addition; we also observed differentially expressed genes associated with apoptosis control, such as BCL2L1, CASP7, CDKN1A, E2F2, ITPR, CD274, TNFAIP6, TNFRSF25, TNFRSF13C, and TNFRSF17. CONCLUSION: Our results suggest that the combination of altered expression of genes involved in signaling pathways of immune response and apoptosis control may contribute directly to the main characteristics observed in BS, such as recurrent infections, growth failure, and high risk of cancer. Transcriptome studies of other instability syndromes could allow a more accurate analysis of the relevant gene interactions associated with the destabilization of the genome. This is a first description of the profile of differential gene expression related to immunological aspects detected in patients with BS by RNA-seq.


Subject(s)
Bloom Syndrome/genetics , Transcriptome , Adolescent , Adult , Apoptosis , B-Lymphocytes/immunology , Bloom Syndrome/immunology , Female , Humans , Male
11.
Diabetol Metab Syndr ; 7: 84, 2015.
Article in English | MEDLINE | ID: mdl-26435753

ABSTRACT

BACKGROUND: Insulinomas are the most common functional pancreatic neuroendocrine tumors, whereas histopathological features do not predict their biological behaviour. In an attempt to better understand the molecular processes involved in the tumorigenesis of islet beta cells, the present study evaluated the expression of genes belonging to the hepatocyte growth factor and its receptor (HGF/MET) system, namely, MET, HGF; HGFAC and ST14 (encode HGF activator and matriptase, respectively, two serine proteases that catalyze conversion of pro-HGF to active HGF); and SPINT1 and SPINT2 (encode serine peptidase inhibitors Kunitz type 1 and type 2, respectively, two inhibitors of HGF activator and of matriptase). METHODS: Quantitative real-time reverse transcriptase polymerase chain reaction was employed to assess RNA expression of the target genes in 24 sporadic insulinomas: 15 grade 1 (G1), six grade 2 (G2) and three hepatic metastases. Somatic mutations of MET gene were searched by direct sequencing of exons 2, 10, 14, 16, 17 and 19. RESULTS: Overexpression of MET was observed in the three hepatic metastases concomitantly with upregulation of the genes encoding HGF and matriptase and downregulation of SPINT1. A positive correlation was observed between MET RNA expression and Ki-67 proliferation index while a negative correlation was detected between SPINT1 expression and the mitotic index. No somatic mutations were found in MET gene. CONCLUSION: The final effect of the increased expression of HGF, its activator (matriptase) and its specific receptor (MET) together with a decreased expression of one potent inhibitor of matriptase (SPINT1) is probably a contribution to tumoral progression and metastatization in insulinomas.

12.
Chem Biol Interact ; 239: 184-91, 2015 Sep 05.
Article in English | MEDLINE | ID: mdl-26091902

ABSTRACT

Synthesis of compounds analogous to natural products from secondary metabolites, such as flavonoids, is a promising source of novel drugs. Rutin (quercetin-3-O-rutinoside) is a natural flavone, which has, in its chemical structure, different sites for coordination with transition metals and the complexation with these metals enhances its biological properties. Rutin-zinc(II), a flavonoid-metal complex, was synthesized and characterized by UV-VIS, FT-IR, elemental analysis and (1)H NMR. The antioxidant and antitumor activities, as well as the cytotoxicity and in vivo toxicity of this complex were evaluated and compared with the free rutin. Rutin-zinc(II) has not shown any cytotoxicity against normal cells (fibroblasts and HUVECs) or toxicity in BALB/c mice, but has shown antioxidant activity in vitro and cytotoxicity against leukemia (KG1, K562 and Jurkat), multiple myeloma (RPMI8226) and melanoma (B16F10 and SK-Mel-28) cell lines in vitro. In Ehrlich ascites carcinoma model, Rutin-zinc(II) modulated the mitochondrial membrane potential and the expression of genes related to cell cycle progression, angiogenesis and apoptosis.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Rutin/chemistry , Zinc/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Cell Line/drug effects , Chemistry Techniques, Synthetic , Coordination Complexes/chemical synthesis , Female , Gene Expression Regulation/drug effects , Humans , Magnetic Resonance Spectroscopy , Membrane Potential, Mitochondrial/drug effects , Mice, Inbred BALB C , Molecular Structure , Paclitaxel/administration & dosage , Paclitaxel/pharmacology , Rutin/pharmacology , Toxicity Tests, Subchronic , Xenograft Model Antitumor Assays
13.
BMC Cancer ; 13: 451, 2013 Oct 02.
Article in English | MEDLINE | ID: mdl-24088503

ABSTRACT

BACKGROUND: Human homeobox genes encode nuclear proteins that act as transcription factors involved in the control of differentiation and proliferation. Currently, the role of these genes in development and tumor progression has been extensively studied. Recently, increased expression of HOXB7 homeobox gene (HOXB7) in pancreatic ductal adenocarcinomas (PDAC) was shown to correlate with an invasive phenotype, lymph node metastasis and worse survival outcomes, but no influence on cell proliferation or viability was detected. In the present study, the effects arising from the knockdown of HOXB7 in PDAC cell lines was investigated. METHODS: Real time quantitative PCR (qRT-PCR) (Taqman) was employed to assess HOXB7 mRNA expression in 29 PDAC, 6 metastatic tissues, 24 peritumoral tissues and two PDAC cell lines. siRNA was used to knockdown HOXB7 mRNA in the cell lines and its consequences on apoptosis rate and cell proliferation were measured by flow cytometry and MTT assay respectively. RESULTS: Overexpression of HOXB7 mRNA was observed in the tumoral tissues and in the cell lines MIA PaCa-2 and Capan-1. HOXB7 knockdown elicited (1) an increase in the expression of the pro-apoptotic proteins BAX and BAD in both cell lines; (2) a decrease in the expression of the anti-apoptotic protein BCL-2 and in cyclin D1 and an increase in the number of apoptotic cells in the MIA PaCa-2 cell line; (3) accumulation of cell in sub-G1 phase in both cell lines; (4) the modulation of several biological processes, especially in MIA PaCa-2, such as proteasomal ubiquitin-dependent catabolic process and cell cycle. CONCLUSION: The present study confirms the overexpression of HOXB7 mRNA expression in PDAC and demonstrates that decreasing its protein level by siRNA could significantly increase apoptosis and modulate several biological processes. HOXB7 might be a promising target for future therapies.


Subject(s)
Apoptosis/genetics , Carcinoma, Pancreatic Ductal/genetics , Cell Cycle Checkpoints/genetics , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/genetics , Pancreatic Neoplasms/genetics , RNA, Messenger , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Cell Proliferation , E2F Transcription Factors/genetics , Gene Dosage , Gene Expression Profiling , Gene Knockdown Techniques , Gene Silencing , Humans , Pancreatic Neoplasms/metabolism , RNA, Small Interfering/genetics , Reproducibility of Results , Retinoblastoma Protein/genetics
15.
Leuk Res ; 33(7): 970-3, 2009 Jul.
Article in English | MEDLINE | ID: mdl-18976811

ABSTRACT

The chemokine stromal-derived factor-1alpha (SDF-1alpha) and its receptor CXCR4 are critically involved in directional migration and homing of plasma cells in multiple myeloma. Here, we show that the expression of SDF-1alpha and CXCR4 was significantly down-regulated in patients treated with thalidomide (n=10) as compared to newly diagnosed MM patients (n=31) and MM patients treated with other drugs (n=38). SDF-1 alpha and CXCR4 expression was also significantly decreased in a RPMI 8226 cell line treated with 10 and 20micromol/L of thalidomide. Our findings indicate that thalidomide therapy induces down-regulation of CXCR4 and its ligand SDF-1alpha in multiple myeloma.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Chemokine CXCL12/metabolism , Gene Expression/drug effects , Multiple Myeloma/drug therapy , Receptors, CXCR4/metabolism , Thalidomide/therapeutic use , Adult , Aged , Aged, 80 and over , Cell Line, Tumor , Chemokine CXCL12/genetics , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Humans , Male , Middle Aged , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, CXCR4/genetics , Reverse Transcriptase Polymerase Chain Reaction
16.
Molecules ; 12(7): 1352-66, 2007 Jul 09.
Article in English | MEDLINE | ID: mdl-17909491

ABSTRACT

The antioxidant activity of flavonoids is believed to increase when they are coordinated with transition metal ions. However, the literature on this subject is contradictory and the outcome seems to largely depend on the experimental conditions. In order to understand the contribution of the metal coordination and the type of interaction between a flavonoid and the metal ion, in this study a new metal complex of Cu (II) with naringin was synthesized and characterized by FT-IR, UV-VIS, mass spectrometry (ESI-MS/MS), elemental analysis and 1H-NMR. The results of these analyses indicate that the complex has a Cu (II) ion coordinated via positions 4 and 5 of the flavonoid. The antioxidant, anti-inflammatory and antimicrobial activities of this complex were studied and compared with the activity of free naringin. The Naringin-Cu (II) complex 1 showed higher antioxidant, anti-inflammatory and tumor cell cytotoxicity activities than free naringin without reducing cell viability.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Copper/chemistry , Flavanones/chemical synthesis , Flavanones/pharmacology , Animals , Biphenyl Compounds/chemistry , Cell Cycle/drug effects , Cell Death/drug effects , Drug Screening Assays, Antitumor , Flavanones/administration & dosage , Flavanones/chemistry , Free Radical Scavengers/chemistry , Humans , Hydrazines/chemistry , Hydrogen-Ion Concentration , K562 Cells , Magnetic Resonance Spectroscopy , Male , Mice , Microbial Sensitivity Tests , Picrates , Spectrometry, Mass, Electrospray Ionization , Spectrophotometry, Ultraviolet
17.
RBCF, Rev. bras. ciênc. farm. (Impr.) ; 42(3): 405-411, jul.-set. 2006. ilus
Article in English | LILACS | ID: lil-446360

ABSTRACT

Apolipoprotein B (ApoB) plays a major role in the regulation of cellular cholesterol homeostasis and pathogenesis of atherosclerosis. This protein acts as a ligand for the cellular recognition and catabolism of low density lipoprotein (LDL) by the LDL receptor. Previous studies have shown that the expression of apoB in hepatic cells is regulated by the interaction of factors binding to enhancer elements in intron 2 and three elements designated III, IV and V. These elements lie within regions respectively -86 to -62, -72 to -53 and -53 to -33 from the ApoB promoter. In this study, we have suggested that transcription factor C/EBPalpha, which binds to the -53 to -33 region of the apoB, interacts with the HNF-4 synergistic complex and C/EBPalpha factors within -86 to -53 and may contribute to increase transcription of the ApoB gene.


A apolipoproteina B (apoB) tem um importante papel na regulação na homeostasia celular, do colesterol e na patogênese da aterosclerose. Esta proteína age como ligante para o reconhecimento e catabolismo lipoproteínas de baixa densidade (LBD) através do receptor de LDL. Estudos anteriores mostraram que a expressão do gene da apolipoproteína B (APOB) em células hepáticas é regulada pela interação de fatores ligados ao elemento enhancer no intron 2, e em 3 elementos denominados de III, IV e V localizados nas regiões -86 a -62, -72 a -53 e -53 a -33 , respectivamente, do promotor do gene da APOB. Neste trabalho, nós sugerimos que o fator de transcrição C/EBPalfa ligado a região -53 a -33 da APOB interage com o complexo HNF-4 e C/EBPalfa localizado dentro da região -86 a -53 do APO B e contribui para aumentar a transcrição do gene APOB.


Subject(s)
Apolipoproteins B , Transcription Factors , Hepatocytes , Lipoproteins, LDL
18.
São Paulo med. j ; 115(6): 1593-5, nov.-dez. 1997. ilus
Article in English | LILACS | ID: lil-209327

ABSTRACT

Congenital generalized lipodystrophy is a rare inherited disease. One of its features is a disturbance in lipid metabolism characterized by hypercholesterolemia and hypertriglyceridemia. A brother and a sister with congenital generalized lipodystrophy, an 8-year old male and a 12-year old female were studied. The mother and a 6-year old brother were healthy. The genetic analysis of Sstl RFLP of the apo Al-CIII-AIV gene cluster showed the presence of the rare Sstl allele (S2) in the patients but not in the healthy mother and brother. As this uncommon allele has been reported to be related to high plasma triglyceride levels, this association could be relevant in explaining in part the hypertriglyceridemia observed in these patients.


Subject(s)
Child , Female , Humans , Apolipoproteins/genetics , Triglycerides/blood , Multigene Family/genetics , Alleles , Lipodystrophy/congenital , Lipodystrophy/genetics , Polymorphism, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...