Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Reprod ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813940

ABSTRACT

Obesity and ovotoxicant exposures impair female reproductive health with greater ovotoxicity reported in obese relative to lean females. The mother and developing fetus are vulnerable to both during gestation. 7,12-dimethylbenz[a]anthracene (DMBA) is released during carbon combustion including from cigarettes, coal, fossil fuels and forest fires. This study investigated the hypothesis that diet-induced obesity would increase sensitivity of the ovaries to DMBA-induced ovotoxicity and determined impacts of both obesity and DMBA exposure during gestation on the maternal ovary. Female C57BL/6 J mice were fed a control (CT) or a High Sugar High Fat (HSHF; 45% kcal from fat; 20% kcal from sucrose) diet until ~30% weight gain was attained before mating with unexposed males. From gestation day 7, mice were exposed intraperitoneally to either vehicle control (corn oil) or DMBA (1 mg/kg diluted in corn oil) for 7 d. Thus, there were four groups: lean control (LC); lean DMBA exposed (LD); obese control (OC); obese DMBA exposed (OD). Gestational obesity and DMBA exposure decreased (P < 0.05) ovarian and increased liver weights relative to LC dams, but there was no treatment impact (P > 0.05) on spleen weight or progesterone. Also, obesity exacerbated the DMBA reduction (P < 0.05) in the number of primordial, secondary follicles and corpora lutea. In lean mice, DMBA exposure altered abundance of 21 proteins; in obese dams, DMBA exposure affected 134 proteins while obesity alone altered 81 proteins in the maternal ovary. Thus, the maternal ovary is impacted by DMBA exposure and metabolic status influences the outcome.

2.
Toxicol Sci ; 194(1): 23-37, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37208198

ABSTRACT

Glyphosate (GLY) is an herbicide used for rural and urban weed control. Urinary GLY in women is associated with shortened gestational length yet effects of GLY on offspring due to maternal exposure are unclear. This study tested the hypothesis that maternal chronic pre-conceptional GLY exposure would cause phenotypic and molecular changes in F1 offspring. Female C57BL/6 mice (7-week-old; n = 40) received saline vehicle control (CT; n = 20) or GLY (2 mg/kg; n = 20) daily per os for 10 weeks. At dosing completion, females were housed with unexposed males and divided into Cohort 1 who were euthanized at gestation day 14 (n = 10 per treatment) and Cohort 2 who completed gestation (n = 10 per treatment). F1 female ovarian and liver samples underwent LC-MS/MS and bioinformatic analysis. Maternal exposure did not affect litter (P > .05) sex ratio, or embryonic or neonatal gross phenotypes. In Cohort 2 offspring, no treatment effect on (P > .05) offspring anogenital distance, puberty onset, or ovarian follicular composition was noted. Body weight was increased (P < .05) in male GLY-exposed compared with CT dam offspring. F1 females from GLY-exposed dams had altered (P < .05) abundance of 54 ovarian and 110 hepatic proteins. Pathways altered in the ovary (false discovery rate [FDR] ≤ 0.07) included thermogenesis and phosphatidylinositol-3 kinase-AKT signaling and in liver (FDR ≤ 0.08) included metabolic, glutathione metabolism, oxidative phosphorylation, non-alcoholic fatty liver disease, and thermogenesis. Thus, pre-conceptional GLY exposure affected offspring phenotypic and molecular profiles potentially impacting reproductive health.


Subject(s)
Maternal Exposure , Prenatal Exposure Delayed Effects , Humans , Animals , Mice , Female , Male , Maternal Exposure/adverse effects , Ovary , Proteome , Chromatography, Liquid , Sexual Maturation , Mice, Inbred C57BL , Tandem Mass Spectrometry , Liver , Prenatal Exposure Delayed Effects/chemically induced , Glyphosate
3.
Toxicol Sci ; 190(2): 204-214, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36173347

ABSTRACT

Exposure to glyphosate (GLY), a commonly used herbicide, is supported by urinary detection and associated with shortened gestation in women. This study tested the hypothesis that chronic low-dose pre-conceptional GLY exposure would affect maternal ovarian function mid- and post-gestation. Mice (C57BL/6; n = 40) were exposed per os to saline vehicle control (CT; n = 20) or GLY (2 mg/kg; n = 20) daily for 10 weeks starting at 7 weeks of age. Post-exposure, females were impregnated and euthanized at gestation day 14 (GD14) or post-weaning (PW). Pregnancy success was reduced from 75% to 55% by GLY exposure. No treatment effect (p > .05) on body weight, maternal serum 17ß-estradiol, or litter size was noted. Ovarian weight was unaffected or reduced (p < .05) by GLY in GD14 and PW dams, respectively. Exposure to GLY decreased (p < .05) PW ovarian secondary follicle number with no other follicle composition impacts. Protein abundance analysis by LC-MS/MS identified that GLY altered (p < .05) 26 ovarian and 41 hepatic proteins in GD14 dams and 39 hepatic proteins in PW dams. In GD14 dams, GLY increased ovarian protein abundance of SEC16A (p < .05; 29-fold) and hepatic RPS27L and GM4952 (p < .05; ∼4-fold). In both GD14 and PW dams, GLY exposure increased (p < .05) hepatic RPS4 and decreased (p < .05) ECHDC3. Pathway analysis using DAVID identified 10 GLY hepatic pathway targets with FDR ≤ 0.07 in GD14 dams.


Subject(s)
Herbicides , Prenatal Exposure Delayed Effects , Proteome , Animals , Female , Mice , Pregnancy , Chromatography, Liquid , Endoplasmic Reticulum , Golgi Apparatus , Maternal Exposure/adverse effects , Mice, Inbred C57BL , Tandem Mass Spectrometry , Vesicular Transport Proteins , Herbicides/toxicity , Liver , Ovary/metabolism , Glyphosate
4.
Exp Eye Res ; 170: 108-116, 2018 05.
Article in English | MEDLINE | ID: mdl-29486162

ABSTRACT

The 14-3-3 family of proteins has undergone considerable expansion in higher eukaryotes with humans and mice expressing seven isoforms (ß, ε, η, γ, θ, ζ, and σ) from seven distinct genes (YWHAB, YWAHE, YWHAH, YWHAG, YWHAQ, YWHAZ, and SFN). Growing evidence indicates that while highly conserved, these isoforms are not entirely functionally redundant as they exhibit unique tissue expression profiles, subcellular localization, and biochemical functions. A key limitation in our understanding of 14-3-3 biology lies in our limited knowledge of cell-type specific 14-3-3 expression. Here we provide a characterization of 14-3-3 expression in whole retina and isolated rod photoreceptors using reverse-transcriptase digital droplet PCR. We find that all 14-3-3 genes with the exception of SFN are expressed in mouse retina with YWHAQ and YWHAE being the most highly expressed. Rod photoreceptors are enriched in YWHAE (14-3-3 ε). Immunohistochemistry revealed that 14-3-3 ε and 14-3-3 ζ exhibit unique distributions in photoreceptors with 14-3-3 ε restricted to the inner segment and 14-3-3 ζ localized to the outer segment. Our data demonstrates that, in the retina, 14-3-3 isoforms likely serve specific functions as they exhibit unique expression levels and cell-type specificity. As such, future investigations into 14-3-3 function in rod photoreceptors should be centered on 14-3-3 ε and 14-3-3 ζ, depending on the subcellular region of question.


Subject(s)
14-3-3 Proteins/genetics , Gene Expression Regulation/physiology , Retina/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Animals , Blotting, Western , Female , Immunohistochemistry , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Plasmids , Protein Isoforms/genetics , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction
5.
J Exp Bot ; 69(5): 1171-1181, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29281064

ABSTRACT

In C4 plants, the pyruvate phosphate dikinase regulatory protein (PDRP) regulates the C4 pathway enzyme pyruvate phosphate dikinase (PPDK) in response to changes in incident light intensity. In maize (Zea mays) leaves, two distinct isoforms of PDRP are expressed, ZmPDRP1 and ZmPDRP2. The properties and C4 function of the ZmPDRP1 isoform are well understood. However, the PDRP2 isoform has only recently been identified and its properties and function(s) in maize leaves are unknown. We therefore initiated an investigation into the maize PDRP2 isoform by performing a side by side comparison of its enzyme properties and cell-specific distribution with PDRP1. In terms of enzyme functionality, PDRP2 was found to possess the same protein kinase-specific activity as PDRP1. However, the PDRP2 isoform was found to lack the phosphotransferase activity of the bifunctional PDRP1 isoform except when PDRP2 in the assays is elevated 5- to 10-fold. A primarily immuno-based approach was used to show that PDRP1 is strictly expressed in mesophyll cells and PDRP2 is strictly expressed in bundle sheath strand cells (BSCs). Additionally, using in situ immunolocalization, we establish a regulatory target for PDRP2 by showing a significant presence of C4 PPDK in BSC chloroplasts. However, a metabolic role for PPDK in this compartment is obscure, assuming PPDK accumulating in this compartment would be irreversibly inactivated each dark cycle by a monofunctional PDRP2.


Subject(s)
Chloroplasts/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Pyruvate, Orthophosphate Dikinase/genetics , Zea mays/genetics , Amino Acid Sequence , Chloroplasts/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Pyruvate, Orthophosphate Dikinase/chemistry , Pyruvate, Orthophosphate Dikinase/metabolism , Sequence Alignment , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...