Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hist Biol ; 51(4): 807-840, 2018 12.
Article in English | MEDLINE | ID: mdl-30140966

ABSTRACT

The genomics community has frequently compared advances in sequencing to advances in microelectronics. Lately there have been many claims, including by the National Human Genome Research Institute (NHGRI), that genomics is outpacing developments in computing as measured by Moore's law - the notion that computers double in processing capability per dollar spent every 18-24 months. Celebrations of the "$1000 genome" and other speed-related sequencing milestones might be dismissed as a distraction from genomics' slowness in delivering clinical breakthroughs, but the fact that such celebrations have been persistently encouraged by the NHGRI reveals a great deal about the priorities and expectations of the American general public, the intended audience of the genomics-computing comparison. By delving into the history of speculative thinking about sequencing and computing, this article demonstrates just how much more receptive to high-risk/high-payoff ventures the NIH and the general public have become. The article also provides access to some of the roots and consequences of the association of "innovation talk" with genomics, and the means to look past that association to the less glamorous (but arguably much more important) contributions of the NHGRI to building the field of genomics.


Subject(s)
Computers/statistics & numerical data , Genomics/history , Human Genome Project/history , Inventions/statistics & numerical data , National Human Genome Research Institute (U.S.)/history , Genomics/instrumentation , History, 20th Century , History, 21st Century , United States
2.
Ber Wiss ; 34(2): 156-73, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21879517

ABSTRACT

This article shows how the USA's National Institutes of Health (NIH) helped to bring about a major shift in the way computers are used to produce knowledge and in the design of computers themselves as a consequence of its early 1960s efforts to introduce information technology to biologists. Starting in 1960 the NIH sought to reform the life sciences by encouraging researchers to make use of digital electronic computers, but despite generous federal support biologists generally did not embrace the new technology. Initially the blame fell on biologists' lack of appropriate (i.e. digital) data for computers to process. However, when the NIH consulted MIT computer architect Wesley Clark about this problem, he argued that the computer's quality as a device that was centralized posed an even greater challenge to potential biologist users than did the computer's need for digital data. Clark convinced the NIH that if the agency hoped to effectively computerize biology, it would need to satisfy biologists' experimental and institutional needs by providing them the means to use a computer without going to a computing center. With NIH support, Clark developed the 1963 Laboratory Instrument Computer (LINC), a small, real-time interactive computer intended to be used inside the laboratory and controlled entirely by its biologist users. Once built, the LINC provided a viable alternative to the 1960s norm of large computers housed in computing centers. As such, the LINC not only became popular among biologists, but also served in later decades as an important precursor of today's computing norm in the sciences and far beyond, the personal computer.


Subject(s)
Biology/history , Clinical Laboratory Information Systems/history , Medical Informatics/history , Microcomputers/history , National Institutes of Health (U.S.)/history , History, 20th Century , Humans , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...