Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35511036

ABSTRACT

Modified atmosphere (MA) packaging plays an important role in improving food quality and safety. By using different gas mixtures and packaging materials the shelf life of fresh produce can significantly be increased. A Gram-negative-staining, rod-shaped, orange-pigmented strain DH-B6T, has been isolated from MA packed raw pork sausage (20% CO2, 80% O2). The strain produced biofilms and showed growth at high CO2 levels of up to 40%. Complete 16S rRNA gene and whole-genome sequences revealed that strain DH-B6T belongs to the genus Chryseobacterium, being closely related to strain Chryseobacterium indologenes DSM 16777T (98.4%), followed by Chryseobacterium gleum NCTC11432T (98.3%) and Chryseobacterium lactis KC1864T (98.2%). Average nucleotide identity value between DH-B6T and C. indologenes DSM 16777T was 81.1% and digital DNA-DNA hybridisation was 24.9%, respectively. The DNA G+C content was 35.51 mol%. Chemotaxonomical analysis revealed the presence of the rare glycine lipid cytolipin, the serine-glycine lipid flavolipin and the sulfonolipid sulfobacin A, as well as phosphatidylethanolamine, monohexosyldiacylglycerol and ornithine lipid, including the hydroxylated forms. Major fatty acids were iC15 : 0 (50.7%) and iC17 : 1 cis 9 (28.7%), followed by iC15 : 0 2-OH (7.0%) and iC17 : 0 3-OH (6.2%). The isolated strain contained MK-6 as the only respiratory quinone and flexirubin-like pigments were detected as the major pigments. Based on the phenotypic, chemotaxonomic and phylogenetic characteristics, the strain DH-B6T (=DSM 110542T=LMG 31915T) represents a novel species of the genus Chryseobacterium, for which the name Chryseobacterium capnotolerans sp. nov. is proposed. Emended descriptions of the genus Chryseobacterium and eight species of this genus based on polar lipid characterisation are also proposed.


Subject(s)
Chryseobacterium , Atmosphere/analysis , Bacterial Typing Techniques , Base Composition , Carbon Dioxide , DNA, Bacterial/genetics , Fatty Acids/chemistry , Glycine/genetics , Lipids/analysis , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
2.
Proteins ; 90(7): 1443-1456, 2022 07.
Article in English | MEDLINE | ID: mdl-35175626

ABSTRACT

Petroleum-based plastics are durable and accumulate in all ecological niches. Knowledge on enzymatic degradation is sparse. Today, less than 50 verified plastics-active enzymes are known. First examples of enzymes acting on the polymers polyethylene terephthalate (PET) and polyurethane (PUR) have been reported together with a detailed biochemical and structural description. Furthermore, very few polyamide (PA) oligomer active enzymes are known. In this article, the current known enzymes acting on the synthetic polymers PET and PUR are briefly summarized, their published activity data were collected and integrated into a comprehensive open access database. The Plastics-Active Enzymes Database (PAZy) represents an inventory of known and experimentally verified enzymes that act on synthetic fossil fuel-based polymers. Almost 3000 homologs of PET-active enzymes were identified by profile hidden Markov models. Over 2000 homologs of PUR-active enzymes were identified by BLAST. Based on multiple sequence alignments, conservation analysis identified the most conserved amino acids, and sequence motifs for PET- and PUR-active enzymes were derived.


Subject(s)
Plastics , Polyethylene Terephthalates , Biodegradation, Environmental , Hydrolysis , Plastics/metabolism , Polyethylene Terephthalates/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...