Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(12)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37374397

ABSTRACT

The article considered the issues of the modification of gypsum stone to improve its performance properties. The influence of mineral additives on the physical and mechanical characteristics of the modified gypsum composition is described. The composition of the gypsum mixture included slaked lime and an aluminosilicate additive in the form of ash microspheres. It was isolated from ash and slag waste from fuel power plants as a result of their enrichment. This made it possible to reduce the carbon content in the additive to 3%. Modified compositions of the gypsum composition are proposed. The binder was replaced with an aluminosilicate microsphere. Hydrated lime was used to activate it. Its content varied: 0, 2, 4, 6, 8 and 10% of the weight of the gypsum binder. Replacing the binder with an aluminosilicate product for the enrichment of ash and slag mixtures made it possible to improve the structure of the stone and increase its operational properties. The compressive strength of the gypsum stone was 9 MPa. This is more than 100% higher than the strength of the control composition of gypsum stone. Studies have confirmed the effectiveness of using an aluminosilicate additive-a product of enrichment of ash and slag mixtures. The use of an aluminosilicate component for the production of modified gypsum mixtures allows the saving of gypsum resources. Developed formulations of gypsum compositions using aluminosilicate microspheres and chemical additives provide the specified performance properties. This makes it possible to use them in the production of self-leveling floors, plastering and puttying works. Replacing traditional compositions with a new composition based on waste has a positive effect on the preservation of the natural environment and contributes to the formation of comfortable conditions for human habitation.

2.
Materials (Basel) ; 15(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36233948

ABSTRACT

Increasing the percentage of recycling of various industrial waste is an important step towards caring for the environment. Coal ash is one of the most large-tonnage wastes, which is formed as a result of the operation of thermal power plants. The aim of this work is to develop a technology for the complex processing of coal ash. The tasks to achieve this aim are to develop a technology for the complex enrichment and separation of coal ash into components, with the possibility of their use in various applications, in particular: processing the aluminosilicate part as a pozzolanic additive to cement; carbon underburning for fuel briquettes; the iron-containing part for metallurgy and fertilizers. Complex enrichment and separation into components of coal ash were carried out according to the author's technology, which includes six stages: disintegration, flotation, two-stage magnetic separation, grinding, and drying. The aluminosilicate component has a fairly constant granulometric composition with a mode of 13.56 µm, a specific surface area of 1597.2 m2/kg, and a bulk density of 900 kg/m3. The compressive strength for seven and twenty-eight daily samples when Portland cement is replaced by 15% with an aluminosilicate additive, increases to 30-35%. According to the developed technology, high-calorie fuel briquettes are obtained from underburnt with a density of 1000-1200 kg/m3, a calorific value of 19.5-20 MJ/kg, and an ash content of 0.5-1.5%. The iron-containing component, recovered by two-stage magnetic separation, has the potential to be used in metallurgy as a coking additive, in particular for the production of iron and steel. In addition, an effective micro-fertilizer was obtained from the iron-containing component, which: is an excellent source of minerals; improves the quality of acidic soil; helps soil microorganisms decompose organic matter faster, turning it into elements available to plants; promotes rooting of seedlings; helps to more effectively deal with many pests and diseases. As a result, the complete utilization of coal ash in various applications has been achieved.

3.
Materials (Basel) ; 14(21)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34772201

ABSTRACT

Increasing the efficiency of using gypsum binders can be carried out by using not natural gypsum raw materials, but calcium sulfate-containing waste from various industries (phosphogypsum, borogypsum, citrogypsum, etc.). As the main source material in the work, we used gypsum-containing waste from a faience factory in the form of waste molds for casting dishes, souvenirs and plumbing fixtures. It has been established that the optimal binding system is formed by mixing powders of dihydrate technogenic gypsum from a coarse and fine earthenware factory with average particle diameters of 3.473 microns and 3.065 microns in a percentage ratio of 30:70, respectively. Using a computer software developed by the authors, which makes it possible to simulate the microstructure of a raw mixture taking into account the contact interaction of particles and calculate the average coordination number, models of binary packing of particles were constructed at various ratios of their diameters. Studies of the strength of composites obtained on the basis of bidisperse systems have shown the presence of an extremum in the region of mixtures containing 30% coarse powder. With optimal packing, a large number of phase contacts are formed due to the regulation of the grain composition of the bidisperse system. It was revealed that a brick based on the waste of two-water gypsum from earthenware production has 2.5-5 times better characteristics of compressive strength than traditional building wall products based on natural gypsum. At the same time, the strength immediately after molding is more than 3 times higher than that of traditional gypsum products. Even higher indicators are achieved when adding microcalcite in addition to the waste of earthenware production, in this case, the compressive strength is 3-6 times higher, and the strength immediately after molding is almost 3 times higher than that of traditional gypsum products.

4.
Materials (Basel) ; 14(21)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34772006

ABSTRACT

Climate change and the potential depletion of fossil fuels have increased international demand for alternative and renewable energy sources. In terms of the energy sector, for example, most of the South-East Asian countries (SACs) have a large number of biomass sources due to their vast forest resources and agriculture-based economies. Thus, the critical review was aimed at highlighting the overview of biomass energy in South-East Asia as a dynamically developing region, in order to obtain economic and environmental benefits from the existing sources of biomass in the world. The current review analyzed the sources of biomass, as well as their energy potential, use, and management, based on reports from different countries, published studies, and scientific articles. In SAC, the main sources of biomass were found to be coconut residues, oil palm residues, sugar cane residues, rice straw, rice husks, wood waste, and firewood. The combined annual biomass potentials in the forestry and agricultural sectors in South-East Asia were approximately over 500 million tons per year and more than 8 gigajoule of total energy potentials. The study identified the challenges and barriers to using biomass in these countries to achieve sustainable use of biomass sources and recommended sustainable approaches to using biomass energy by comparing traditional uses of biomass. Smart grid technologies have ways for solutions for better electric power production and efficient ways for distribution and transmission of electricity. Smart grids require less space and can be more easily installed when compared to traditional grids because of their versatilities. Upcoming challenges include technology optimization for the following uses of biomass energy: direct combustion of woody biomass; pyrolysis and gasification of biomass; anaerobic digestion of organic waste to produce biogas; landfill gas production direct incineration of organic waste. The barriers in this technology are emissions of carbon and nitrogen oxides, unpleasant odors, as well as the uncontrolled harvesting of biomass, which can harm nature.

SELECTION OF CITATIONS
SEARCH DETAIL
...