Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Glob Heart ; 15(1): 69, 2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33150134

ABSTRACT

As the global COVID-19 pandemic advances, it increasingly impacts those vulnerable populations who already bear a heavy burden of neglected tropical disease. Chagas disease (CD), a neglected parasitic infection, is of particular concern because of its potential to cause cardiac, gastrointestinal, and other complications which could increase susceptibility to COVID-19. The over one million people worldwide with chronic Chagas cardiomyopathy require special consideration because of COVID-19's potential impact on the heart, yet the pandemic also affects treatment provision to people with acute or chronic indeterminate CD. In this document, a follow-up to the WHF-IASC Roadmap on CD, we assess the implications of coinfection with SARS-CoV-2 and Trypanosoma cruzi, the etiological agent of CD. Based on the limited evidence available, we provide preliminary guidance for testing, treatment, and management of patients affected by both diseases, while highlighting emerging healthcare access challenges and future research needs.


Subject(s)
COVID-19/diagnosis , COVID-19/epidemiology , Chagas Disease/diagnosis , Chagas Disease/epidemiology , Neglected Diseases , COVID-19/therapy , Chagas Cardiomyopathy/diagnosis , Chagas Cardiomyopathy/epidemiology , Chagas Disease/therapy , Comorbidity , Cross-Sectional Studies , Follow-Up Studies , Forecasting , Health Services Accessibility/trends , Health Services Needs and Demand/trends , Humans , Risk Factors
2.
Preprint in English | SciELO Preprints | ID: pps-1144

ABSTRACT

As the global COVID-19 pandemic advances, it increasingly impacts the vulnerable populations who already bear a heavy burden of neglected tropical diseases. Chagas disease (CD), a neglected parasitic infection, is of particular concern because of its potential to cause cardiac, gastrointestinal, and other complications which could increase susceptibility to COVID-19. The over one million people worldwide with chronic Chagas cardiomyopathy require special consideration because of COVID-19's potential impact on the heart, yet the pandemic also affects treatment provision to people with acute or chronic indeterminate CD. In this document, a follow-up to the WHF-IASC Roadmap on CD, we assess the implications of coinfection with SARS-CoV-2 and Trypanosoma cruzi, the etiological agent of CD. Based on the limited evidence available, we provide preliminary guidance for testing, treatment, and management of patients affected by both diseases, while highlighting emerging healthcare access challenges and future research needs.

3.
Glob Heart ; 15(1): 26, 2020 03 30.
Article in English | MEDLINE | ID: mdl-32489799

ABSTRACT

Background: Chagas Disease is a neglected tropical disease caused by the protozoan Trypanosoma cruzi, with some of the most serious manifestations affecting the cardiovascular system. It is a chronic, stigmatizing condition, closely associated with poverty and affecting close to 6 million people globally. Although historically the disease was limited to endemic areas of Latin America recent years have seen an increasing global spread. In addition to the morbidity and mortality associated with the disease, the social and economic burdens on individuals and society are substantial. Often called the 'silent killer', Chagas disease is characterized by a long, asymptomatic phase in affected individuals. Approximately 30% then go on develop chronic Chagas cardiomyopathy and other serious cardiac complications such as stroke, rhythm disturbances and severe heart failure. Methods: In a collaboration of the World Hearth Federation (WHF) and the Inter-American Society of Cardiology (IASC) a writing group consisting of 20 diverse experts on Chagas disease (CD) was convened. The group provided up to date expert knowledge based on their area of expertise. An extensive review of the literature describing obstacles to diagnosis and treatment of CD along with proposed solutions was conducted. A survey was sent to all WHF Members and, using snowball sampling to widen the consultation, to a variety of health care professionals working in the CD global health community. The results were analyzed, open comments were reviewed and consolidated, and the findings were incorporated into this document, thus ensuring a consensus representation. Results: The WHF IASC Roadmap on Chagas Disease offers a comprehensive summary of current knowledge on prevention, diagnosis and management of the disease. In providing an analysis of 'roadblocks' in access to comprehensive care for Chagas disease patients, the document serves as a framework from which strategies for implementation such as national plans can be formulated. Several dimensions are considered in the analysis: healthcare system capabilities, governance, financing, community awareness and advocacy. Conclusion: The WHF IASC Roadmap proposes strategies and evidence-based solutions for healthcare professionals, health authorities and governments to help overcome the barriers to comprehensive care for Chagas disease patients. This roadmap describes an ideal patient care pathway, and explores the roadblocks along the way, offering potential solutions based on available research and examples in practice. It represents a call to action to decision-makers and health care professionals to step up efforts to eradicate Chagas disease.


Subject(s)
Chagas Disease/prevention & control , Practice Guidelines as Topic , Chagas Disease/epidemiology , Global Health , Humans , Morbidity/trends , World Health Organization
4.
J Hum Genet ; 54(10): 603-11, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19745832

ABSTRACT

We analyzed the genetic profile of 563 individuals from 12 geographically targeted human populations from Europe, Asia and Africa using 27 human-specific polymorphic Alu insertions. Phylogenetic analyses indicated a clear correspondence between genetic profiles and historical patterns of gene flow and genetic drift. Sub-Saharan African populations (Benin, Cameroon, Kenya and Rwanda) formed a visibly differentiated cluster, indicating the role of the Sahara desert as a strong natural barrier to gene flow. Moreover, a higher than expected genetic affinity between populations from Europe, North Africa and Asia was detected, probably reflecting the homogenizing effects of bidirectional migratory processes between Eurasia and North Africa during the Plio-Pleistocene and Neolithic periods or the insensitivity of these markers in discriminating between these groups. The Ami aborigines of Formosa present a distinctive degree of genetic uniqueness from all the other groups, consistent with a pattern of isolation by distance, small population size and, accordingly, substantial genetic drift. We further tested all 27 Alu loci for their potential usefulness as ancestry informative markers (AIMs). On the basis of differences between weighted allelic frequencies (delta-values) and F(ST) values, we propose that 11 of the 27 Alu elements could be useful as part of the current AIM panels to assess phylogenetic relationships.


Subject(s)
Alu Elements/genetics , Biological Evolution , Mutagenesis, Insertional/physiology , Polymorphism, Genetic , Africa , Asia , Emigration and Immigration , Europe , Genetic Markers , Genetics, Population , Humans , Phylogeny , Polymorphism, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...