Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(22)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36432137

ABSTRACT

The adsorption of Eu(III) on composites synthesised from graphene oxide (GO), maghemite (MGH), and chitosan (CS) has been studied using different approaches. The physicochemical and morphological characteristics of the composites GO-MGH, GO-CS, GO-MGH-CS I, II, and III were determined by XRD, Mössbauer spectroscopy, FTIR, Raman spectroscopy, and TEM. According to the results of batch experiments, the maximum experimental adsorption capacity was 52, 54, 25, 103, and 102 mg/g for GO-MGH, GO-CS, GO-MGH-CS I, II, and III, respectively. The data obtained are in better agreement with the Langmuir, pseudo-second-order, and pseudo-first-order models only for GO-MGH. Thus, the adsorption of Eu(III) on the composites was a favourable, monolayer, and occurred at homogeneous sites. The nature of adsorption is chemical and, in the case of GO-MGH, physical. Tests of the composites in natural waters showed a high removal efficiency for Eu(III), Pu(IV), and Am(III), ranging from 74 to 100%. The ANFIS model has quite good predictive ability, as shown by the values for R2, MSE, SSE, and ARE. The GO-MGH-CS composites with the high adsorption capacity could be promising candidates for the removal of Eu(III) and the pre-concentration of Pu(IV) and Am(III) from natural waters.


Subject(s)
Chitosan , Europium , Adsorption , Ions
2.
Environ Sci Pollut Res Int ; 29(49): 74933-74950, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35648351

ABSTRACT

The muscovite mica clay-graphene oxide-maghemite-magnetite (γ-Fe2O3-Fe3O4) composite was first used for the adsorption of caesium(I) and cobalt(II). The presence of clay minerals, graphene oxide, maghemite, and magnetite was detected in the prepared composite by XRD, WD-XRF, Mössbauer spectroscopy, and ATR-FTIR. The SEM and TEM results show that the composite has a layered structure with irregularly shaped pores on the surface. It was found that the adsorption of ions depends on the initial concentration, pH (except for caesium), mass of adsorbent, temperature, and contact time. The maximum adsorption capacity for Cs(I) and Co(II) was 2286 mg/g and 652 mg/g, respectively, and was obtained at concentrations (Cs(I) = 12,630 mg/L; Co(II) = 3200 mg/L), adsorbent mass of 0.01 g, pH (Cs(I) = 7; Co(II) = 5), temperature of 20 ± 1 °C, and contact time of 24 h. The high adsorption capacity of the composite could be due to a diversity of functional groups, a large number of active sites or the multilayer adsorption of caesium and cobalt ions on the surface of the composite. The Freundlich, Langmuir isotherms, and the pseudo-second-order kinetic model better describe the adsorption of these ions on the composite. The adsorption was non-spontaneous endothermic for Cs(I) and spontaneous endothermic for Co(II). The proposed mechanism of adsorption of Cs and Co ions on the composite is complex and involves electrostatic interactions and ion exchange. The ANFIS model proved to be quite effective in predicting the adsorption of Cs(I) and Co(II), as shown by the obtained values of R2, MSE, SSE, and ARE.

3.
J Environ Manage ; 309: 114685, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35151139

ABSTRACT

The increasing anthropogenic pressure results in environmental pollution and thus adversely affects the integrity of ecosystems. Consequently, various methods of removing pollutants from effluents have been developed and used to minimise this negative impact, with adsorption on clay minerals identified as the most promising approach. This review examines the adsorption of heavy metals, radionuclides, and organic pollutants on clays/clay minerals and their composites under diverse conditions and deals with the applications of these materials in the construction of engineering barriers for waste management. Additionally, we discuss the efficiency and mechanisms of pollutant adsorption on clays subjected to various treatments and modifications while describing the beneficial effects of such modification/treatment on adsorption performance, reusability, and in vivo/in vitro toxicity.


Subject(s)
Environmental Pollutants , Metals, Heavy , Water Pollutants, Chemical , Adsorption , Aluminum Silicates , Clay , Ecosystem , Minerals , Radioisotopes
SELECTION OF CITATIONS
SEARCH DETAIL
...