Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
N Biotechnol ; 72: 22-28, 2022 Dec 25.
Article in English | MEDLINE | ID: mdl-36007808

ABSTRACT

Advances are needed in the site-directed mutagenesis of large plasmids for protein structure-function studies, as current methods are often inefficient, complicated and time-consuming. Here two new methods are reported that overcome these difficulties, namely the single primer extension reaction (SSPER) strategy that reaches 100% efficiency and the reduce recycle PCR (rrPCR) method that is advantageous in generating single and pairwise combinations of mutations. Both methods are distinguished from current technologies by the addition of a step that easily removes the oligonucleotide primer(s) after the first reaction, thus allowing for the addition of a second reaction in chronological sequence to generate and isolate the appropriate DNA product with the site-directed mutation(s). High efficiency of the methods is demonstrated by generating single and paired combinations of the 11 site-directed mutations targeted on 5 different plasmid DNA templates ranging from 10 to 12 kb and 57-60% GC-content at a rate of 50-100%. Overall, the methods are demonstrated to be (i) highly accurate, allowing for screening of plasmids by DNA sequencing, (ii) streamlined to generate the mutations within a single day, (iii) cost-effective in requiring only two primers and two enzymes (DpnI and a proofreading DNA polymerase), (iv) straightforward in primer design, (v) applicable for both large and small plasmids, and (vi) easily implemented by entry level researchers.


Subject(s)
DNA , Mutagenesis, Site-Directed , Polymerase Chain Reaction/methods , Plasmids/genetics , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...