Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 21(20): 205106, 2009 May 20.
Article in English | MEDLINE | ID: mdl-21825525

ABSTRACT

Raman scattering, IR reflectance and modulated-DSC measurements are performed on specifically prepared dry (AgI)(x)(AgPO(3))(1-x) glasses over a wide range of compositions 0%37.8% are elastically flexible. Raman optical elasticity power laws, trends in the nature of the glass transition endotherms, corroborate the three elastic phase assignments. Ionic conductivities reveal a step-like increase when glasses become stress-free at x>x(c)(1) = 9.5% and a logarithmic increase in conductivity (σ∼(x-x(c)(2))(µ)) once they become flexible at x>x(c)(2) = 37.8% with a power law µ = 1.78. The power law is consistent with percolation of 3D filamentary conduction pathways. Traces of water doping lower T(g) and narrow the reversibility window, and can also completely collapse it. Ideas on network flexibility promoting ion conduction are in harmony with the unified approach of Ingram et al (2008 J. Phys. Chem. B 112 859), who have emphasized the similarity of process compliance or elasticity relating to ion transport and structural relaxation in decoupled systems. Boson mode frequency and scattering strength display thresholds that coincide with the two elastic phase boundaries. In particular, the scattering strength of the boson mode increases almost linearly with glass composition x, with a slope that tracks the floppy mode fraction as a function of mean coordination number r predicted by mean-field rigidity theory. These data suggest that the excess low frequency vibrations contributing to the boson mode in flexible glasses come largely from floppy modes.

2.
Phys Rev Lett ; 98(19): 195501, 2007 May 11.
Article in English | MEDLINE | ID: mdl-17677626

ABSTRACT

We observe two thresholds in the variations of electrical conductivity of dry (AgI)_{x}(AgPO3)_{1-x} solid electrolyte glasses, when the AgI additive concentration x increases to 9.5% and to 37.8%. Raman scattering complemented by calorimetric measurements confirms that these thresholds are signatures of the rigidity phase transitions at x=9.5% from a stressed rigid to an isostatically (stress-free) rigid phase, and at x=37.8% from isostatically rigid to a flexible phase. In the flexible phase, the electrical conductivity seems to increase as a power of x. This is in good agreement with the theoretical prediction based on 3D percolation.


Subject(s)
Electric Conductivity , Electrolytes/chemistry , Phase Transition , Pliability , Silver Compounds/chemistry , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...