Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(10): 11484-11493, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38496990

ABSTRACT

The persistent issue of ceramic membrane fouling poses significant challenges to its widespread implementation. To address this concern, ozone nanobubbles (ozone-NBs) have garnered attention due to their remarkable mass transfer efficiency. In this investigation, we present a novel ozone-NB generator system to effectively clean a fouled ceramic membrane that is typically employed in the dye industry. The surface characteristics of the ceramic membrane underwent significant alterations, manifesting incremental changes in surface roughness and foulant accumulation reduction, as evidenced in atomic force microscopy, scanning electron microscopy, X-ray fluorescence, and energy-dispersive spectroscopy. Remarkably, the sequential 4 h cleaning process demonstrates an effective outcome leading to an almost 2-fold enhancement in the membrane flux. The initial fouled state of 608 L/h/m2 increased to 1050 L/h/m2 in the 4 h state with a recovery of 50%. We propose such membrane performance improvement governed by the ozone-NBs with a size distribution of 213.2 nm and a zeta potential value of -20.26 ± 0.13 mV, respectively. This effort showcases a substantial innovative and sustainable technology approach toward proficient foulant removal in water treatment applications.

2.
ACS Omega ; 8(47): 45152-45162, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38046325

ABSTRACT

The intricate role of temperature in the structure-property relationship of manganese oxide nanoparticles (Mn3O4 NPs) remains an open question. In this study, we successfully synthesized Mn3O4 NPs using the hydrothermal method with two differing temperatures, namely, 90 and 150 °C. Interestingly, a smaller average particle size is found when Mn3O4 NPs are synthesized at 150 °C compared to 90 °C, corresponding to 46.54 and 63.37 nm, respectively. This was confirmed by the time variation of temperature setting of 150 °C where the size evolution was insignificant, indicating a competing effect of nucleation and growth particles. Under varying NaOH concentrations (2-6 M) at 150 °C, a reduction in the particle size is found at the highest NaOH concentration (6 M). The particle grows slightly, indicating that the growth state is dominant compared to the nucleation state at low concentrations of NaOH. This finding implies that the high nucleation rate originates from the excessive monomer supply in the high-temperature reaction. In terms of crystallinity order, the structural arrangement of Mn3O4 NPs (150 °C) is largely decreased; this is likely due to a facile redox shift to the higher oxidation state of manganese. In addition, the higher ratio of adsorbed oxygen and lattice oxygen in Mn3O4 NPs at 150 °C is indirectly due to the higher oxygen vacancy occupancies, which supported the crystallinity decrease. Our findings provide a new perspective on manganese oxide formation in hydrothermal systems.

3.
RSC Adv ; 13(39): 27634-27647, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37727586

ABSTRACT

Stealth technology advances in radar-absorbing materials (RAMs) continue to grow rapidly. Barium hexaferrite is the best candidate for RAMs applications. Manganese dioxide (MnO2) is a transition metal with high dielectric loss and can be used as a booster for changing polarization and reducing reflection loss. The advantages of BaFe12O19 and MnO2 can be combined in a core-shell BaFe12O19@MnO2 composite to improve the material's performance. MnO2 composition, temperature, hydrothermal holding time, and sample thickness all have an impact on the core-shell structure. In this study, a core-shell BaFe12O19@MnO2 composite is synthesized in two stages: molten salt synthesis to produce BaFe12O19 as the core and hydrothermal synthesis to synthesize MnO2 as the shell. In the hydrothermal synthesis, BaFe12O19 and KMnO4 were mixed in deionized water using different mass ratios of BaFe12O19 to KMnO4 (1 : 0.25, 1 : 0.5, 1 : 0.75, and 1 : 1). The main goal of the analysis was to figure out how well the hydrothermal synthesis method worked at different temperatures (140 °C, 160 °C, and 180 °C) and holding times (9 h, 12 h, and 15 h). The composite material was subjected to characterization using a vector network analyzer, specifically at thicknesses of 1.5 mm, 2 mm, 2.5 mm, and 3 mm. The hydrothermal temperature and composition ratio of BaFe12O19 : MnO2 are the most influential parameters in reducing reflection loss. Accurate control of the parameters makes a BaFe12O19@MnO2 core-shell composite structure with a lot of sheets. The structure is capable of absorbing 99.99% of electromagnetic waves up to a sample thickness of 1.5 mm. The novelty of this study is its ability to achieve maximal absorptions on a sample with minimal thickness through precise parametric control. This characteristic makes it highly suitable for practical applications, such as performing as an anti-radar coating material. BaFe12O19@MnO2 demonstrates performance as a reliable electromagnetic wave absorber material with simple fabrication, producing absorption at C and X band frequencies.

4.
ACS Omega ; 8(26): 23622-23632, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37426230

ABSTRACT

The electrospun nanofiber membrane from polyvinyl chloride (PVC) waste for water treatment applications has been successfully produced. The PVC precursor solution was prepared by dissolving the PVC waste in DMAc solvent, and a centrifuge was used to separate undissolved materials from the precursor solution. Ag and TiO2 were added to the precursor solution before the electrospinning process. We studied the fabricated PVC membranes using SEM, EDS, XRF, XRD, and FTIR to study the fiber and membrane properties. The SEM images depicted that Ag and TiO2 addition has changed the morphology and size of fibers. The EDS images and XRF spectra confirmed the presence of Ag and TiO2 on the nanofiber membrane. The XRD spectra showed the amorphous structure of all membranes. The FTIR result indicated that the solvent completely evaporated throughout the spinning process. The fabricated PVC@Ag/TiO2 nanofiber membrane showed the photocatalytic degradation of dyes under visible light. The filtration test on the membrane PVC and PVC@Ag/TiO2 depicted that the presence of Ag and TiO2 affected the flux and separation factor of the membrane.

5.
ACS Omega ; 8(26): 23664-23672, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37426264

ABSTRACT

Nanofiber membranes were successfully synthesized from expanded polystyrene (EPS) waste with the addition of poly(vinylpyrrolidone) (PVP) for water microfiltration using the electrospinning method. The EPS-based nanofiber membranes exhibited a smooth morphology and were uniform in size. The concentration of the EPS/PVP solution changed some of the physical parameters of the nanofiber membrane, such as viscosity, conductivity, and surface tension. Greater viscosity and surface tension increase the nanofiber membrane diameter, whereas the addition of PVP results in hydrophilicity. Additionally, increasing the pressure increased the flux value of each variation of the nanofiber membranes. Furthermore, the rejection value was 99.99% for all variations. Finally, the use of EPS waste for nanofiber membranes is also beneficial for decreasing the amount of EPS waste in the environment and is an alternative to the current membranes available in the market for water filtration applications.

6.
RSC Adv ; 12(52): 33751-33760, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36505690

ABSTRACT

Acrylonitrile butadiene styrene (ABS) is one of the most common fused-filament feedstocks for 3D printing. The rapid growth of the 3D printing industry has resulted in huge demand for ABS filaments; however, it generates a large amount of waste. This study developed a novel method using waste ABS to fabricate electrospun nanofiber membranes (ENMs) for water filtration. Polyvinylpyrrolidone (PVP) was employed to modify the properties of waste ABS, and the effect of PVP addition in the range of 0-5 wt% was investigated. The results showed that adding PVP increased the viscosity and surface tension but decreased the conductivity of the precursor solution. After electrospinning, PVP could reduce the number of beads, increase the porosity and fiber diameter, and improve the wettability of the fabricated fibers. Moreover, the bilayer of ABS ENMs achieved a high flux value between 2951 and 48 041 L m-2 h-1 and a high rejection rate of 99%. Our study demonstrates a sustainable strategy to convert waste plastics to inexpensive materials for wastewater treatment membranes.

7.
Molecules ; 27(13)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35807241

ABSTRACT

Propolis contains a wide range of pharmacological activities because of their various bioactive compounds. The beneficial effect of propolis is interesting for treating type-2 diabetes mellitus (T2DM) owing to dysregulation of multiple metabolic processes. In this study, 275 of 658 Asian propolis compounds were evaluated as potential anti-T2DM agents using the DIA-DB web server towards 18 known anti-diabetes protein targets. More than 20% of all compounds could bind to more than five diabetes targets with high binding affinity (<−9.0 kcal/mol). Filtering with physicochemical and pharmacokinetic properties, including ADMET parameters, 12 compounds were identified as potential anti-T2DM with favorable ADMET properties. Six of those compounds, (2R)-7,4'-dihydroxy-5-methoxy-8-methylflavone; (RR)-(+)-3'-senecioylkhellactone; 2',4',6'-trihydroxy chalcone; alpinetin; pinobanksin-3-O-butyrate; and pinocembrin-5-methyl ether were first reported as anti-T2DM agents. We identified the significant T2DM targets of Asian propolis, namely retinol-binding protein-4 (RBP4) and aldose reductase (AKR1B1) that have important roles in insulin sensitivity and diabetes complication, respectively. Molecular dynamic simulations showed stable interaction of selected propolis compounds in the active site of RBP4 and AKR1B1. These findings suggest that Asian propolis compound may be effective for treatment of T2DM by targeting RBP4 and AKR1B1.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Propolis , Aldehyde Reductase , Asian People , Diabetes Mellitus, Type 2/drug therapy , Humans , Molecular Dynamics Simulation , Propolis/chemistry , Retinol-Binding Proteins, Plasma
8.
Food Sci Anim Resour ; 42(3): 426-440, 2022 May.
Article in English | MEDLINE | ID: mdl-35611077

ABSTRACT

The bioactive functions of oligosaccharides from human milk have been reported by many studies. Many of oligosaccharides isolated from colostrum and/or milk of dairy animals have been reported to have similar chemical structures with those in human colostrum and/or milk. It has been proved by several studies that the oligosaccharides with similar chemical structure shared common bioactivities. Among domesticated dairy animals, bovine/cattle, caprine/goat, and ovine/sheep are the most commonly used species to isolate oligosaccharides from their colostrum and/or milk. Several studies on the oligosaccharides from goat colostrum and milk have revealed similar properties to that of human milk and possess the highest content of sialyl oligosaccharides (SOS) as compared to other ruminants. Indonesia ranks first in Association of Southeast Asian Nations (ASEAN) for goat milk production. Therefore, goat milk is the second most consumed milk in the country. The most reared dairy goat breed in Indonesia is Etawah Grade. However, oligosaccharides from Indonesia dairy animals including goat, have not been characterized. This is the first study to characterize oligosaccharides from Indonesia dairy animals. The present study was aimed to isolate and characterize oligosaccharides, specifically SOS from the colostrum of Etawah Grade goats by using proton/1H-nuclear magnetic resonance. The SOS successfully characterized in this study were: Neu5Ac(α2-3)Gal(ß1-4)Glc (3'-N-acetylneuraminyllactose), Neu5Ac(α2-6)Gal(ß1-4)Glc (6'-N-acetylneuraminyllactose), Neu5Gc(α2-3)Gal(ß1-4)Glc (3'-N-glycolylneuraminyllactose), Neu5Gc(α2-6)Gal(ß1-4)Glc (6'-N-glycolylneuraminyllactose), Neu5Ac(α2-6)Gal(ß1-4) GlcNAc (6'-N-acetylneuraminyllactosamine) and Neu5Gc(α2-6)Gal(ß1-4)GlcNAc (6'-N-glycolylneuraminyllactosamine). This finding shows that Etawah Grade, as a local dairy goat breed in Indonesia, is having significant potential to be natural source of oligosaccharides that can be utilized in the future food and pharmaceutical industries.

9.
ACS Omega ; 7(12): 10516-10525, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35382322

ABSTRACT

The PAN/TiO2/Ag nanofibers membrane for air filtration media was successfully synthesized with electrospinning method. The morphology, size, and element percentage of the nanofiber were characterized by a scanning electron microscopy-energy dispersive spectroscopy, while X-ray fluorescence and FTIR were used to observe the chemical composition. The water contact angle and UV-vis absorption were measured for physical properties. Performance for air filtration media was measured by pressure drop, efficiency, and quality factor test. TiO2 and Ag have been successfully deposited in nonuniform 570 nm PAN/TiO2/Ag nanofibers. The nanofiber membrane had hydrophilic surface after TiO2 and Ag addition with a water contact angle of 34.58°. UV-vis data showed the shifting of absorbance and band gap energy of nanofibers membrane to visible light from 3.8 to 1.8 eV. The 60 min spun PAN/TiO2/Ag nanofibers membrane had a 96.9% efficiency of PM2.5, comparable to results reported in previous studies. These properties were suitable to be applied on air filtration media with photocatalytic activity for self-cleaning performance.

10.
Molecules ; 26(21)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34770753

ABSTRACT

Marine-derived biowaste increment is enormous, yet could be converted into valuable biomaterial, e.g., hydroxyapatite-based bioceramic. Bioceramic material possesses superiority in terms of thermal, chemical, and mechanical properties. Bioceramic material also has a high level of biocompatibility when projected into biological tissues. Tuning the porosity of bioceramic material could also provide benefits for bioseparation application, i.e., ultrafiltration ceramic membrane filtration for food and dairy separation processes. This work presents the investigation of hydroxyapatite conversion from crab-shells marine-based biowaste, by comparing three different methods, i.e., microwave, coprecipitation, and sol-gel. The dried crab-shells were milled and calcinated as calcium precursor, then synthesized into hydroxyapatite with the addition of phosphates precursors via microwave, coprecipitation, or sol-gel. The compound and elemental analysis, degree of crystallinity, and particle shape were compared. The chemical compounds and elements from three different methods were similar, yet the degree of crystallinity was different. Higher Ca/P ratio offer benefit in producing a bioceramic ultrafiltration membrane, due to low sintering temperature. The hydroxyapatite from coprecipitation and sol-gel methods showed a significant degree of crystallinity compared with that of the microwave route. However, due to the presence of Fe and Sr impurities, the secondary phase of Ca9FeH(PO4)7 was found in the sol-gel method. The secondary phase compound has high absorbance capacity, an advantage for bioceramic ultrafiltration membranes. Furthermore, the sol-gel method could produce a snake-like shape, compared to the oval shape of the coprecipitation route, another benefit to fabricate porous bioceramic for a membrane filter.


Subject(s)
Aquatic Organisms/chemistry , Biocompatible Materials/chemistry , Ceramics/chemistry , Waste Products/analysis , Chemistry Techniques, Synthetic , Durapatite/chemical synthesis , Durapatite/chemistry , Materials Testing , Microwaves , Porosity , Spectrum Analysis
11.
Biochem Biophys Rep ; 26: 100969, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33681482

ABSTRACT

Docking analysis of propolis's natural compound was successfully performed against SARS-CoV-2 main protease (Mpro) and spike protein subunit 2 (S2). Initially, the propolis's protein was screened using chromatography analysis and successfully identified 22 compounds in the propolis. Four compounds were further investigated, i.e., neoblavaisoflavone, methylophiopogonone A, 3'-Methoxydaidzin, and genistin. The binding affinity of 3'-Methoxydaidzin was -7.7 kcal/mol, which is similar to nelfinavir (control), while the others were -7.6 kcal/mol. However, we found the key residue of Glu A:166 in the methylophiopogonone A and genistin, even though the predicted binding energy slightly higher than nelfinavir. In contrast, the predicted binding affinity of neoblavaisoflavone, methylophiopogonone A, 3'-Methoxydaidzin, and genistin against S2 were -8.1, -8.2, -8.3, and -8.3 kcal/mol, respectively, which is far below of the control (pravastatin, -7.3 kcal/mol). Instead of conventional hydrogen bonding, the π bonding influenced the binding affinity against S2. The results reveal that this is the first report about methylophiopogonone A, 3'-Methoxydaidzin, and genistin as candidates for anti-viral agents. Those compounds can then be further explored and used as a parent backbone molecule to develop a new supplementation for preventing SARS-CoV-2 infections during COVID-19 outbreaks.

12.
An Acad Bras Cienc ; 92(3): e20200524, 2020.
Article in English | MEDLINE | ID: mdl-33206807

ABSTRACT

Two steps CrAlFeSi coating has been fabricated on low carbon steel via mechanical alloying methods and its oxidation properties have been elucidated thoroughly. First, Al coating was deposited on the low carbon steel substrate via mechanical alloying for 1 h. Afterward, CrAlFeSi coating was deposited on Al coating using the same technique for 2 h. The effect of annealing at 650 °C on the oxidation behavior of two steps CrAlFeSi coatings was examined thoroughly. The microstructure of the coating layer before and after annealing was relatively similar. Microholes and microcracks were found in the coating layer of the substrate before and after annealing. Intermetallic phases were observed in the samples along with the major elements. The mass gain after cyclic oxidation at 800 °C in the air atmosphere for a substrate with two coating layers reduced by a factor of 10 compared to the substrate without coating layer, which is likely due to the formation of Al2O3 on the outer layer during the oxidation process. The thin layer of Al2O3 protects the inner layer from severe oxidation. Therefore, the two steps coating of CrAlFeSi on the low carbon steel can be used as an alternative method for reducing the oxidation at high temperature.

13.
Chem Commun (Camb) ; 56(9): 1385-1388, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-31912062

ABSTRACT

We investigated the multiscale characters of the crystal structure of the oxynitride perovskite LaTiO2N. While X-ray diffraction results identified the average structure as being centrosymmetric, we detected a signature of unknown structural deformation. By viewing the local structure, we unveiled the formation of a polar structure at the nanoscale.

SELECTION OF CITATIONS
SEARCH DETAIL
...