Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 174(Pt 1): 113481, 2023 12.
Article in English | MEDLINE | ID: mdl-37986491

ABSTRACT

A mathematical model to predict the thermal inactivation of non-O157 Shiga toxin-producing Escherichia coli (STEC) in ground beef was developed, with temperature and fat content of ground beef as controlling factors. Survival curves for a cocktail of non-O157 STEC strains in ground beef at four temperatures (55, 60, 65, and 68 °C) and six fat levels (5, 10, 15, 20, 25, and 30%) were generated. Nine primary models-log-linear, log-linear with tail, biphasic, sigmoidal, four-factor sigmoidal, Baranyi, Weibull, mixed Weibull, and Gompertz-were tested for fitting the survival curves. Primary modeling analysis showed the Weibull model had the highest accuracy factor and Akaike's weight, making it the best-fitting model. The parameters of the Weibull model were estimated using a nonlinear mixed, and response surface modeling was used to develop a second-order polynomial regression to estimate the impact of fat in ground beef and cooking temperature on the heat resistance of non-O157 STEC strains. The secondary model was successfully validated by comparing predicted lethality (log10 CFU/g) with the observed values for ground beef containing 10 and 27% fat at 58 and 62 °C. Process lethality obtained from experimental data was within the prediction interval of the predictive model. The developed model will assist the food industry in estimating the appropriate time and temperature required for cooking ground beef to provide adequate protection against STEC contaminants.


Subject(s)
Meat , Shiga-Toxigenic Escherichia coli , Animals , Cattle , Colony Count, Microbial , Food Microbiology , Cooking
2.
Poult Sci ; 102(8): 102832, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37343348

ABSTRACT

Meat from broilers raised without the use of antibiotics is becoming increasingly popular among consumers. Consequently, interest in the microbial profiling of chickens produced under nonconventional practices is growing, however, research on this topic is lacking. The current study was designed to characterize the dynamics of gut microbial populations of broilers raised under conventional and no antibiotics ever (NAE) practices. Four commercial farms (2 conventional and 2 NAE) were included in this study. On each farm, cecal (n = 224) and ileal (n = 224) contents were collected from birds at different stages during the grow out of a single flock and following transportation to the processing facility. Cecal microbiota was dominated by the genera Escherichia and Enterococcus upon hatching in both conventional and NAE flocks, shifting with time toward predominantly Faecalibacterium and Bacteroides. The composition of cecal microbial communities of NAE broilers was different than that of conventional chickens (P ≤ 0.05). Conventional broilers harbored a rich, but less diverse cecal microbiota than NAE, while the ileal microbiota was primarily populated with genera previously named Lactobacillus, which exhibited a higher abundance in NAE broilers (P ≤ 0.05). In both production systems, the microbiota followed a similar temporal succession that was more evident in the ceca. Transportation to the processing plant impacted the microbial composition of the ileum (P ≤ 0.05), characterized by an increase in the relative abundance of Psychrobacter. Finally, differential abundance analysis showed a positive correlation between Campylobacter and Enorma within the cecum microbiota, and a negative correlation with Salmonella.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Chickens/microbiology , Anti-Bacterial Agents , Cecum/microbiology , Animal Feed/analysis
3.
Microbiol Resour Announc ; 11(2): e0092521, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35112897

ABSTRACT

This report describes the genome sequences of two Lactobacillus johnsonii strains (AER105 and AER25) and three Ligilactobacillus salivarius strains (AER35, AER36, and AER04) recovered from broiler chicken gastrointestinal tracts in the southeastern United States. These genome sequences will enhance our understanding of the ecology of lactobacilli in the chicken gut microbiome.

4.
J Food Prot ; 83(3): 491-496, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32068857

ABSTRACT

ABSTRACT: Salmonella is one of the top causes for bacterial foodborne infections in the United States, emphasizing the importance of controlling this pathogen for protecting public health. Poultry and poultry products are commonly associated with Salmonella, and interventions during production and processing are necessary to manage the risk of infection due to consumption of poultry products. In recent times, the demand for organic and antibiotic-free poultry has increased owing to consumer perceptions and concerns of increasing prevalence of antimicrobial-resistant (AMR) pathogens. However, the microbiological effect of these management practices is not clear. This study was conducted to determine the difference in the AMR of Salmonella isolated from poultry processed conventionally and organically. Fecal samples, carcass rinses, and environmental samples were collected over 1 year and analyzed for the prevalence of Salmonella and AMR. Results of this experiment showed that organic chickens were associated with statistically higher levels of Salmonella during early processing steps. However, no difference in Salmonella prevalence was observed between organic and conventional carcasses postchill. In addition, for most antimicrobial agents tested, prevalence of AMR Salmonella in conventional processing was lower in this study than was reported by the National Antimicrobial Resistance Monitoring System for chickens at slaughter. These observations indicate that organic methods may introduce greater risk of Salmonella contamination; however, proper interventions during processing can abate this risk. In addition, this study supports the assertion that raising chickens without the use of antibiotics may result in lower prevalence of AMR Salmonella.


Subject(s)
Anti-Bacterial Agents , Chickens , Drug Resistance, Bacterial , Food Handling/methods , Animals , Anti-Bacterial Agents/pharmacology , Consumer Product Safety , Microbial Sensitivity Tests , Prevalence , Salmonella/drug effects , Salmonella/growth & development
5.
Poult Sci ; 98(3): 1447-1454, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30325456

ABSTRACT

Campylobacter is one of the leading cause of foodborne illness in the US and worldwide, especially linked to poultry and poultry products. In recent years, the increasing popularity of organic chicken products and chickens raised without antibiotics (RWA) has resulted in more companies adopting organic and antibiotic-free production and processing methods; however, it is not evident what effect these practices have on pathogens such as Campylobacter. The purpose of this study was to determine the effects of RWA and organic methods on the prevalence and antimicrobial resistance (AMR) of Campylobacter. Samples were collected from a processing facility that used organic and conventional methods to process RWA broilers. Samples included fecal grab samples from incoming birds, carcass rinses at important steps throughout processing, and environmental samples including equipment swabs, water samples, and air samples. Samples were analyzed for prevalence of Campylobacter by enrichment, and populations of presumptive Campylobacter were quantified. Isolates collected in this study were analyzed for AMR according to the National Antimicrobial Resistance Monitoring System (NARMS) protocol. Results showed that organic birds had a lower prevalence (P < 0.05) of Campylobacter and lower populations of presumptive Campylobacter during early processing steps, but no differences (P > 0.05) between organic and conventional birds were seen post-chill, with the exception of a lower prevalence in post-water-chill organic birds. These observations show that organic methods can be associated with lower initial Campylobacter levels than conventional methods, although appropriate processing interventions result in similar Campylobacter populations post-chill, regardless of processing method. Prevalence of AMR Campylobacter in chickens at slaughter suggest that raising birds without the use of antimicrobials may not be effective in reducing the incidence of AMR Campylobacter in chicken.


Subject(s)
Abattoirs , Campylobacter/isolation & purification , Chickens/microbiology , Drug Resistance, Bacterial , Animal Husbandry/methods , Animals , Campylobacter/drug effects , Campylobacter Infections/microbiology , Campylobacter Infections/veterinary , Feces/microbiology , Microbial Sensitivity Tests , Poultry Diseases/microbiology , Prevalence
6.
Foodborne Pathog Dis ; 15(8): 506-516, 2018 08.
Article in English | MEDLINE | ID: mdl-30124342

ABSTRACT

Husbandry practices for laying hens in commercial egg production is a topic of interest from a social, economic, and regulatory standpoint. Animal welfare concerns regarding the use of conventional cages have arisen and consumer perceptions of hen welfare have led to a higher demand for cage-free eggs. The aim of this study was to assess the impact of housing systems on prevalence, persistence, and antimicrobial resistance (AMR) of Campylobacter from laying hens and shell eggs. A total of 425 samples were collected over a 10-month period from the North Carolina Layer Performance and Management Test and Campylobacter isolates were identified by serological, biochemical, and molecular tests. Genetic variability was evaluated using pulsed-field gel electrophoresis (PFGE) and AMR testing was performed. Prevalence of Campylobacter spp. ranged from 11.1% in the enrichable cages to 19.7% in the conventional systems. A greater prevalence of Campylobacter was found in the fecal swab samples from free-range birds compared with those of birds housed in the more intensive housing systems (p > 0.05). Overall, 72 isolates were confirmed as Campylobacter spp. by PCR. More than 90% of the isolates (n = 66) were identified as Campylobacter jejuni, followed by Campylobacter coli (n = 6). C. jejuni isolates displayed high levels of resistance to tetracycline (67%). Genetic variability of Campylobacter was high, with more than 20 PFGE patterns identified. Pattern "a" comprised 42% of isolates from all housing systems and was also the most persistent. This study suggests that housing systems of laying hens used for commercial shell egg production may impact the rate of Campylobacter shedding by layers. Isolation rates and tetracycline resistance levels of this pathogen are still of concern, emphasizing the need for well-implemented biosecurity measures on the farm.


Subject(s)
Anti-Bacterial Agents/pharmacology , Campylobacter Infections/epidemiology , Campylobacter/isolation & purification , Drug Resistance, Bacterial , Poultry Diseases/epidemiology , Animal Husbandry/methods , Animal Welfare , Animals , Campylobacter/classification , Campylobacter Infections/veterinary , Chickens/microbiology , Egg Shell/microbiology , Female , Housing, Animal , North Carolina/epidemiology , Poultry Diseases/microbiology , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL
...