Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Cancer Res Commun ; 3(10): 2182-2194, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37819238

ABSTRACT

The immune suppressive microenvironment is a major culprit for difficult-to-treat solid cancers. Particularly, inhibitory tumor-associated macrophages (TAM) define the resistant nature of the tumor milieu. To define tumor-enabling mechanisms of TAMs, we analyzed molecular clinical datasets correlating cell surface receptors with the TAM infiltrate. Though P-selectin glycoprotein ligand-1 (PSGL-1) is found on other immune cells and functions as an adhesion molecule, PSGL-1 is highly expressed on TAMs across multiple tumor types. siRNA-mediated knockdown and antibody-mediated inhibition revealed a role for PSGL-1 in maintaining an immune suppressed macrophage state. PSGL-1 knockdown or inhibition enhanced proinflammatory mediator release across assays and donors in vitro. In several syngeneic mouse models, PSGL-1 blockade alone and in combination with PD-1 blockade reduced tumor growth. Using a humanized tumor model, we observed the proinflammatory TAM switch following treatment with an anti-PSGL-1 antibody. In ex vivo patient-derived tumor cultures, a PSGL-1 blocking antibody increased expression of macrophage-derived proinflammatory cytokines, as well as IFNγ, indicative of T-cell activation. Our data demonstrate that PSGL-1 blockade reprograms TAMs, offering a new therapeutic avenue to patients not responding to T-cell immunotherapies, as well as patients with tumors devoid of T cells. SIGNIFICANCE: This work is a significant and actionable advance, as it offers a novel approach to treating patients with cancer who do not respond to T-cell checkpoint inhibitors, as well as to patients with tumors lacking T-cell infiltration. We expect that this mechanism will be applicable in multiple indications characterized by infiltration of TAMs.


Subject(s)
Membrane Glycoproteins , Tumor-Associated Macrophages , Mice , Animals , Humans , Tumor-Associated Macrophages/metabolism , Membrane Glycoproteins/genetics , Cytokines , Cell Adhesion Molecules
2.
Adv Biol (Weinh) ; 7(10): e2300047, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37083213

ABSTRACT

Macrophages are multifunctional cells that are employed by the tumor to further its growth and adaptation. While tumor-associated macrophages (TAMs) have widely diverse phenotypes, tumors coevolve with the ones that can promote tumorigenesis. Functionally, TAMs/myeloid cells constitute the largest negative influence on the tumor microenvironment and need to be reprogrammed in order to enable successful anti-tumor response in most tumors. It is predicted that successful TAM repolarization has the potential to become a staple of immuno-oncology across most indications.

3.
Mol Ther Nucleic Acids ; 7: 314-323, 2017 Jun 16.
Article in English | MEDLINE | ID: mdl-28624207

ABSTRACT

Fibrotic diseases contribute to 45% of deaths in the industrialized world, and therefore a better understanding of the pathophysiological mechanisms underlying tissue fibrosis is sorely needed. We aimed to identify novel modifiers of tissue fibrosis expressed by myofibroblasts and their progenitors in their disease microenvironment through RNA silencing in vivo. We leveraged novel biology, targeting genes upregulated during liver and kidney fibrosis in this cell lineage, and employed small interfering RNA (siRNA)-formulated lipid nanoparticles technology to silence these genes in carbon-tetrachloride-induced liver fibrosis in mice. We identified five genes, Egr2, Atp1a2, Fkbp10, Fstl1, and Has2, which modified fibrogenesis based on their silencing, resulting in reduced Col1a1 mRNA levels and collagen accumulation in the liver. These genes fell into different groups based on the effects of their silencing on a transcriptional mini-array and histological outcomes. Silencing of Egr2 had the broadest effects in vivo and also reduced fibrogenic gene expression in a human fibroblast cell line. Prior to our study, Egr2, Atp1a2, and Fkbp10 had not been functionally validated in fibrosis in vivo. Thus, our results provide a major advance over the existing knowledge of fibrogenic pathways. Our study is the first example of a targeted siRNA assay to identify novel fibrosis modifiers in vivo.

4.
J Exp Med ; 212(4): 497-512, 2015 Apr 06.
Article in English | MEDLINE | ID: mdl-25800955

ABSTRACT

Splenic myelopoiesis provides a steady flow of leukocytes to inflamed tissues, and leukocytosis correlates with cardiovascular mortality. Yet regulation of hematopoietic stem cell (HSC) activity in the spleen is incompletely understood. Here, we show that red pulp vascular cell adhesion molecule 1 (VCAM-1)(+) macrophages are essential to extramedullary myelopoiesis because these macrophages use the adhesion molecule VCAM-1 to retain HSCs in the spleen. Nanoparticle-enabled in vivo RNAi silencing of the receptor for macrophage colony stimulation factor (M-CSFR) blocked splenic macrophage maturation, reduced splenic VCAM-1 expression and compromised splenic HSC retention. Both, depleting macrophages in CD169 iDTR mice or silencing VCAM-1 in macrophages released HSCs from the spleen. When we silenced either VCAM-1 or M-CSFR in mice with myocardial infarction or in ApoE(-/-) mice with atherosclerosis, nanoparticle-enabled in vivo RNAi mitigated blood leukocytosis, limited inflammation in the ischemic heart, and reduced myeloid cell numbers in atherosclerotic plaques.


Subject(s)
Hematopoiesis, Extramedullary/immunology , Hematopoietic Stem Cells/immunology , Macrophages/immunology , Myelopoiesis/immunology , Spleen/immunology , Vascular Cell Adhesion Molecule-1/immunology , Animals , Apolipoproteins E/genetics , Apolipoproteins E/immunology , Atherosclerosis/genetics , Atherosclerosis/immunology , Atherosclerosis/pathology , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Hematopoiesis, Extramedullary/genetics , Hematopoietic Stem Cells/pathology , Macrophages/pathology , Mice , Mice, Knockout , Myelopoiesis/genetics , Myocardial Infarction/genetics , Myocardial Infarction/immunology , Myocardial Infarction/pathology , Nanoparticles , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/immunology , Plaque, Atherosclerotic/pathology , RNA Interference , Receptor, Macrophage Colony-Stimulating Factor/genetics , Receptor, Macrophage Colony-Stimulating Factor/immunology , Sialic Acid Binding Ig-like Lectin 1/genetics , Sialic Acid Binding Ig-like Lectin 1/immunology , Spleen/pathology , Vascular Cell Adhesion Molecule-1/genetics
5.
Proc Natl Acad Sci U S A ; 112(5): E458-66, 2015 Feb 03.
Article in English | MEDLINE | ID: mdl-25609670

ABSTRACT

The genes encoding the variable (V) region of the B-cell antigen receptor (BCR) are assembled from V, D (diversity), and J (joining) elements through a RAG-mediated recombination process that relies on the recognition of recombination signal sequences (RSSs) flanking the individual elements. Secondary V(D)J rearrangement modifies the original Ig rearrangement if a nonproductive original joint is formed, as a response to inappropriate signaling from a self-reactive BCR, or as part of a stochastic mechanism to further diversify the Ig repertoire. VH replacement represents a RAG-mediated secondary rearrangement in which an upstream VH element recombines with a rearranged VHDHJH joint to generate a new BCR specificity. The rearrangement occurs between the cryptic RSS of the original VH element and the conventional RSS of the invading VH gene, leaving behind a footprint of up to five base pairs (bps) of the original VH gene that is often further obscured by exonuclease activity and N-nucleotide addition. We have previously demonstrated that VH replacement can efficiently rescue the development of B cells that have acquired two nonproductive heavy chain (IgH) rearrangements. Here we describe a novel knock-in mouse model in which the prerearranged IgH locus resembles an endogenously rearranged productive VHDHJH allele. Using this mouse model, we characterized the role of VH replacement in the diversification of the primary Ig repertoire through the modification of productive VHDHJH rearrangements. Our results indicate that VH replacement occurs before Ig light chain rearrangement and thus is not involved in the editing of self-reactive antibodies.


Subject(s)
Immunoglobulin Variable Region/genetics , Animals , B-Lymphocytes/immunology , Cell Compartmentation , Mice , Mice, Transgenic , Stochastic Processes
6.
Eur Heart J ; 36(23): 1478-88, 2015 Jun 14.
Article in English | MEDLINE | ID: mdl-24950695

ABSTRACT

BACKGROUND: Myocarditis is characterized by inflammatory cell infiltration of the heart and subsequent deterioration of cardiac function. Monocytes are the most prominent population of accumulating leucocytes. We investigated whether in vivo administration of nanoparticle-encapsulated siRNA targeting chemokine (C-C motif) receptor 2 (CCR2)-a chemokine receptor crucial for leucocyte migration in humans and mice--reduces inflammation in autoimmune myocarditis. METHODS AND RESULTS: In myocardium of patients with myocarditis, CCL2 mRNA levels and CCR2(+) cells increased (P < 0.05), motivating us to pursue CCR2 silencing. Flow cytometric analysis showed that siRNA silencing of CCR2 (siCCR2) reduced the number of Ly6C(high) monocytes in hearts of mice with acute autoimmune myocarditis by 69% (P < 0.05), corroborated by histological assessment. The nanoparticle-delivered siRNA was not only active in monocytes but also in bone marrow haematopoietic progenitor cells. Treatment with siCCR2 reduced the migration of bone marrow granulocyte macrophage progenitors into the blood. Cellular magnetic resonance imaging (MRI) after injection of macrophage-avid magnetic nanoparticles detected myocarditis and therapeutic effects of RNAi non-invasively. Mice with acute myocarditis showed enhanced macrophage MRI contrast, which was prevented by siCCR2 (P < 0.05). Follow-up MRI volumetry revealed that siCCR2 treatment improved ejection fraction (P < 0.05 vs. control siRNA-treated mice). CONCLUSION: This study highlights the importance of CCR2 in the pathogenesis of myocarditis. In addition, we show that siCCR2 affects leucocyte progenitor trafficking. The data also point to a novel therapeutic strategy for the treatment of myocarditis.


Subject(s)
Autoimmune Diseases/therapy , Chemokine CCL2/genetics , Myocarditis/therapy , RNA, Small Interfering/pharmacology , Adult , Animals , Cell Movement , Chemokine CCL2/metabolism , Female , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/physiology , Humans , Magnetic Resonance Angiography , Male , Mice , Monocytes/metabolism , Nanoparticles , RNA Interference/physiology
7.
PLoS One ; 9(7): e101749, 2014.
Article in English | MEDLINE | ID: mdl-24992693

ABSTRACT

Argonaute 2 (Ago2) is the only mammalian Ago protein capable of mRNA cleavage. It has been reported that the activity of the short interfering RNA targeting coding sequence (CDS), but not 3' untranslated region (3'UTR) of an mRNA, is solely dependent on Ago2 in vitro. These studies utilized extremely high doses of siRNAs and overexpressed Ago proteins, as well as were directed at various highly expressed reporter transgenes. Here we report the effect of Ago2 in vivo on targeted knockdown of several endogenous genes by siRNAs, targeting both CDS and 3'UTR. We show that siRNAs targeting CDS lose their activity in the absence of Ago2, whereas both Ago1 and Ago3 proteins contribute to residual 3'UTR-targeted siRNA-mediated knockdown observed in the absence of Ago2 in mouse liver. Our results provide mechanistic insight into two components mediating RNAi under physiological conditions: mRNA cleavage dependent and independent. In addition our results contribute a novel consideration for designing most efficacious siRNA molecules with the preference given to 3'UTR targeting as to harness the activity of several Ago proteins.


Subject(s)
Argonaute Proteins/metabolism , Eukaryotic Initiation Factors/metabolism , Fibroblasts/cytology , Liver/metabolism , RNA, Messenger/genetics , Animals , Argonaute Proteins/genetics , Cells, Cultured , Embryo, Mammalian/cytology , Female , Fibroblasts/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , NIH 3T3 Cells , RNA Interference
8.
Nat Commun ; 5: 4277, 2014 Jun 27.
Article in English | MEDLINE | ID: mdl-24969323

ABSTRACT

One of the most significant challenges in the development of clinically viable delivery systems for RNA interference therapeutics is to understand how molecular structures influence delivery efficacy. Here, we have synthesized 1,400 degradable lipidoids and evaluate their transfection ability and structure-function activity. We show that lipidoid nanoparticles mediate potent gene knockdown in hepatocytes and immune cell populations on IV administration to mice (siRNA EC50 values as low as 0.01 mg kg(-1)). We identify four necessary and sufficient structural and pKa criteria that robustly predict the ability of nanoparticles to mediate greater than 95% protein silencing in vivo. Because these efficacy criteria can be dictated through chemical design, this discovery could eliminate our dependence on time-consuming and expensive cell culture assays and animal testing. Herein, we identify promising degradable lipidoids and describe new design criteria that reliably predict in vivo siRNA delivery efficacy without any prior biological testing.


Subject(s)
Gene Knockdown Techniques/methods , Hepatocytes , Leukocytes , Lipids/chemistry , Nanoparticles/chemistry , RNA, Small Interfering/administration & dosage , Animals , Drug Carriers , Mice , Transfection
9.
Nat Nanotechnol ; 9(8): 648-655, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24813696

ABSTRACT

Dysfunctional endothelium contributes to more diseases than any other tissue in the body. Small interfering RNAs (siRNAs) can help in the study and treatment of endothelial cells in vivo by durably silencing multiple genes simultaneously, but efficient siRNA delivery has so far remained challenging. Here, we show that polymeric nanoparticles made of low-molecular-weight polyamines and lipids can deliver siRNA to endothelial cells with high efficiency, thereby facilitating the simultaneous silencing of multiple endothelial genes in vivo. Unlike lipid or lipid-like nanoparticles, this formulation does not significantly reduce gene expression in hepatocytes or immune cells even at the dosage necessary for endothelial gene silencing. These nanoparticles mediate the most durable non-liver silencing reported so far and facilitate the delivery of siRNAs that modify endothelial function in mouse models of vascular permeability, emphysema, primary tumour growth and metastasis.


Subject(s)
Endothelial Cells/metabolism , Nanoparticles/chemistry , Polymers/chemistry , RNA Interference , RNA, Small Interfering/administration & dosage , Animals , Cell Line , Humans , Mice , Nanoparticles/ultrastructure , Neoplasms/genetics , Neoplasms/therapy , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use
10.
Proc Natl Acad Sci U S A ; 111(11): 3955-60, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24516150

ABSTRACT

siRNA therapeutics have promise for the treatment of a wide range of genetic disorders. Motivated by lipoproteins, we report lipopeptide nanoparticles as potent and selective siRNA carriers with a wide therapeutic index. Lead material cKK-E12 showed potent silencing effects in mice (ED50 ∼ 0.002 mg/kg), rats (ED50 < 0.01 mg/kg), and nonhuman primates (over 95% silencing at 0.3 mg/kg). Apolipoprotein E plays a significant role in the potency of cKK-E12 both in vitro and in vivo. cKK-E12 was highly selective toward liver parenchymal cell in vivo, with orders of magnitude lower doses needed to silence in hepatocytes compared with endothelial cells and immune cells in different organs. Toxicity studies showed that cKK-E12 was well tolerated in rats at a dose of 1 mg/kg (over 100-fold higher than the ED50). To our knowledge, this is the most efficacious and selective nonviral siRNA delivery system for gene silencing in hepatocytes reported to date.


Subject(s)
Drug Delivery Systems/methods , Lipopeptides/chemistry , Nanoparticles/chemistry , RNA, Small Interfering/administration & dosage , Animals , Apolipoproteins E/metabolism , Cryoelectron Microscopy , Gene Silencing , Hepatocytes/metabolism , Macaca fascicularis , Mice , RNA, Small Interfering/therapeutic use , Rats
11.
J Am Coll Cardiol ; 63(15): 1556-66, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24361318

ABSTRACT

OBJECTIVES: The aim of this study was to test whether silencing of the transcription factor interferon regulatory factor 5 (IRF5) in cardiac macrophages improves infarct healing and attenuates post-myocardial infarction (MI) remodeling. BACKGROUND: In healing wounds, the M1 toward M2 macrophage phenotype transition supports resolution of inflammation and tissue repair. Persistence of inflammatory M1 macrophages may derail healing and compromise organ functions. The transcription factor IRF5 up-regulates genes associated with M1 macrophages. METHODS: Here we used nanoparticle-delivered small interfering ribonucleic acid (siRNA) to silence IRF5 in macrophages residing in MIs and in surgically-induced skin wounds in mice. RESULTS: Infarct macrophages expressed high levels of IRF5 during the early inflammatory wound-healing stages (day 4 after coronary ligation), whereas expression of the transcription factor decreased during the resolution of inflammation (day 8). Following in vitro screening, we identified an siRNA sequence that, when delivered by nanoparticles to wound macrophages, efficiently suppressed expression of IRF5 in vivo. Reduction of IRF5 expression, a factor that regulates macrophage polarization, reduced expression of inflammatory M1 macrophage markers, supported resolution of inflammation, accelerated cutaneous and infarct healing, and attenuated development of post-MI heart failure after coronary ligation as measured by protease targeted fluorescence molecular tomography-computed tomography imaging and cardiac magnetic resonance imaging (p < 0.05). CONCLUSIONS: This work identified a new therapeutic avenue to augment resolution of inflammation in healing infarcts by macrophage phenotype manipulation. This therapeutic concept may be used to attenuate post-MI remodeling and heart failure.


Subject(s)
Gene Expression Regulation , Interferon Regulatory Factors/genetics , Macrophages/metabolism , Myocardial Infarction/genetics , Myocardium/metabolism , RNA/genetics , Ventricular Remodeling , Animals , Disease Models, Animal , Interferon Regulatory Factors/metabolism , Mice , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Myocardium/pathology , Phenotype
12.
Mol Ther Nucleic Acids ; 2: e72, 2013 Feb 19.
Article in English | MEDLINE | ID: mdl-23423360

ABSTRACT

Effective clinical application of antiviral immunotherapies necessitates enhancing the functional state of natural killer (NK) and CD8(+) T cells. An important mechanism for the establishment of viral persistence in the liver is the activation of the PD-1/PD-L1 inhibitory pathway. To examine the role of hepatic myeloid PD-L1 expression during viral infection, we determined the magnitude and quality of antiviral immune responses by administering PD-L1 short-interfering RNA (siRNA) encapsulated in lipidoid nanoparticles (LNP) in mice. Our studies indicate that Kupffer cells (KC) preferentially engulfed PD-L1 LNP within a short period of time and silenced Pdl1 during adenovirus and MCMV infection leading to enhanced NK and CD8(+) T cell intrahepatic accumulation, effector function (interferon (IFN)-γ and granzyme B (GrB) production), CD8(+) T cell-mediated viral clearance, and memory. Our results demonstrate that PD-L1 knockdown on KCs is central in determining the outcome of liver viral infections, and they represent a new class of gene therapy.Molecular Therapy - Nucleic Acids (2013) 2, e72; doi:10.1038/mtna.2012.63; published online 19 February 2013.

13.
Cancer Immunol Immunother ; 62(2): 285-97, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22903385

ABSTRACT

Dendritic cell (DC)-based vaccination boosting antigen-specific immunity is being explored for the treatment of cancer and chronic viral infections. Although DC-based immunotherapy can induce immunological responses, its clinical benefit has been limited, indicating that further improvement of DC vaccine potency is essential. In this study, we explored the generation of a clinical-grade applicable DC vaccine with improved immunogenic potential by combining PD-1 ligand siRNA and target antigen mRNA delivery. We demonstrated that PD-L1 and PD-L2 siRNA delivery using DLin-KC2-DMA-containing lipid nanoparticles (LNP) mediated efficient and specific knockdown of PD-L expression on human monocyte-derived DC. The established siRNA-LNP transfection method did not affect DC phenotype or migratory capacity and resulted in acceptable DC viability. Furthermore, we showed that siRNA-LNP transfection can be successfully combined with both target antigen peptide loading and mRNA electroporation. Finally, we demonstrated that these PD-L-silenced DC loaded with antigen mRNA superiorly boost ex vivo antigen-specific CD8(+) T cell responses from transplanted cancer patients. Together, these findings indicate that our PD-L siRNA-LNP-modified DC are attractive cells for clinical-grade production and in vivo application to induce and boost immune responses not only in transplanted cancer patients, but likely also in other settings.


Subject(s)
Antigens, Neoplasm/immunology , Cancer Vaccines/genetics , Cancer Vaccines/immunology , Dendritic Cells/immunology , Gene Silencing , Programmed Cell Death 1 Receptor/immunology , Antigens, Neoplasm/genetics , CD8-Positive T-Lymphocytes/immunology , Electroporation , Humans , Immunotherapy , Leukocytes, Mononuclear/immunology , Lipids/immunology , Lymphocyte Activation/immunology , Nanoparticles , Programmed Cell Death 1 Ligand 2 Protein/genetics , Programmed Cell Death 1 Ligand 2 Protein/immunology , Programmed Cell Death 1 Receptor/genetics , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Transfection
14.
J Biol Chem ; 287(48): 40161-72, 2012 Nov 23.
Article in English | MEDLINE | ID: mdl-23066023

ABSTRACT

BACKGROUND: The mechanisms triggering nonalcoholic steatohepatitis (NASH) remain poorly defined. RESULTS: Kupffer cells are the first responding cells to hepatocyte injuries, leading to TNFα production, chemokine induction, and monocyte recruitment. The silencing of TNFα in myeloid cells reduces NASH progression. CONCLUSION: Increase of TNFα-producing Kupffer cells is crucial for triggering NASH via monocyte recruitment. SIGNIFICANCE: Myeloid cells-targeted silencing of TNFα might be a tenable therapeutic approach. Nonalcoholic steatohepatitis (NASH), characterized by lipid deposits within hepatocytes (steatosis), is associated with hepatic injury and inflammation and leads to the development of fibrosis, cirrhosis, and hepatocarcinoma. However, the pathogenic mechanism of NASH is not well understood. To determine the role of distinct innate myeloid subsets in the development of NASH, we examined the contribution of liver resident macrophages (i.e. Kupffer cells) and blood-derived monocytes in triggering liver inflammation and hepatic damage. Employing a murine model of NASH, we discovered a previously unappreciated role for TNFα and Kupffer cells in the initiation and progression of NASH. Sequential depletion of Kupffer cells reduced the incidence of liver injury, steatosis, and proinflammatory monocyte infiltration. Furthermore, our data show a differential contribution of Kupffer cells and blood monocytes during the development of NASH; Kupffer cells increased their production of TNFα, followed by infiltration of CD11b(int)Ly6C(hi) monocytes, 2 and 10 days, respectively, after starting the methionine/choline-deficient (MCD) diet. Importantly, targeted knockdown of TNFα expression in myeloid cells decreased the incidence of NASH development by decreasing steatosis, liver damage, monocyte infiltration, and the production of inflammatory chemokines. Our findings suggest that the increase of TNFα-producing Kupffer cells in the liver is crucial for the early phase of NASH development by promoting blood monocyte infiltration through the production of IP-10 and MCP-1.


Subject(s)
Fatty Liver/immunology , Kupffer Cells/immunology , Tumor Necrosis Factor-alpha/immunology , Animals , Chemokine CCL2/genetics , Chemokine CCL2/immunology , Chemokine CXCL10/genetics , Chemokine CXCL10/immunology , Choline/metabolism , Diet/adverse effects , Disease Models, Animal , Fatty Liver/etiology , Fatty Liver/genetics , Fatty Liver/metabolism , Female , Humans , Methionine/deficiency , Mice , Mice, Inbred C57BL , Monocytes/immunology , Non-alcoholic Fatty Liver Disease , Tumor Necrosis Factor-alpha/genetics
15.
PLoS One ; 7(8): e43343, 2012.
Article in English | MEDLINE | ID: mdl-22905260

ABSTRACT

Mantle cell lymphoma is characterized by a genetic translocation results in aberrant overexpression of the CCND1 gene, which encodes cyclin D1. This protein functions as a regulator of the cell cycle progression, hence is considered to play an important role in the pathogenesis of the disease. In this study, we used RNA interference strategies to examine whether cyclin D1 might serve as a therapeutic target for mantle cell lymphoma. Knocking down cyclin D1 resulted in significant growth retardation, cell cycle arrest, and most importantly, induction of apoptosis. These results mark cyclin D1 as a target for mantle cell lymphoma and emphasize the therapeutic potential hidden in its silencing.


Subject(s)
Cyclin D1/metabolism , Gene Expression Regulation, Neoplastic , Lymphoma, Mantle-Cell/therapy , RNA Interference , Antineoplastic Agents/pharmacology , Apoptosis , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Cell Survival , DEAD-box RNA Helicases/metabolism , Gene Silencing , Humans , RNA/metabolism , Ribonuclease III/metabolism
16.
Proc Natl Acad Sci U S A ; 109(27): E1868-77, 2012 Jul 03.
Article in English | MEDLINE | ID: mdl-22699504

ABSTRACT

Atherosclerosis and insulin resistance are major components of the cardiometabolic syndrome, a global health threat associated with a systemic inflammatory state. Notch signaling regulates tissue development and participates in innate and adaptive immunity in adults. The role of Notch signaling in cardiometabolic inflammation, however, remains obscure. We noted that a high-fat, high-cholesterol diet increased expression of the Notch ligand Delta-like 4 (Dll4) in atheromata and fat tissue in LDL-receptor-deficient mice. Blockade of Dll4-Notch signaling using neutralizing anti-Dll4 antibody attenuated the development of atherosclerosis, diminished plaque calcification, improved insulin resistance, and decreased fat accumulation. These changes were accompanied by decreased macrophage accumulation, diminished expression of monocyte chemoattractant protein-1 (MCP-1), and lower levels of nuclear factor-κB (NF-κB) activation. In vitro cell culture experiments revealed that Dll4-mediated Notch signaling increases MCP-1 expression via NF-κB, providing a possible mechanism for in vivo effects. Furthermore, Dll4 skewed macrophages toward a proinflammatory phenotype ("M1"). These results suggest that Dll4-Notch signaling plays a central role in the shared mechanism for the pathogenesis of cardiometabolic disorders.


Subject(s)
Antibodies, Neutralizing/pharmacology , Atherosclerosis/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Metabolic Syndrome/metabolism , 3T3-L1 Cells , Adaptor Proteins, Signal Transducing , Adipocytes/cytology , Adipocytes/metabolism , Adipose Tissue/metabolism , Animals , Aortic Valve Insufficiency/immunology , Aortic Valve Insufficiency/metabolism , Atherosclerosis/immunology , Atherosclerosis/therapy , Calcium-Binding Proteins , Chemokine CCL2/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , Humans , Immunity, Innate/physiology , Insulin Resistance/physiology , Intercellular Signaling Peptides and Proteins/immunology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/immunology , Macrophages/immunology , Macrophages/metabolism , Membrane Proteins/genetics , Membrane Proteins/immunology , Metabolic Syndrome/immunology , Metabolic Syndrome/therapy , Mice , Mice, Obese , Mice, Transgenic , Receptors, LDL/genetics , Receptors, Notch/metabolism , Saphenous Vein/cytology , Signal Transduction/physiology
17.
Proc Natl Acad Sci U S A ; 109(7): 2491-6, 2012 Feb 14.
Article in English | MEDLINE | ID: mdl-22308361

ABSTRACT

Tumor-associated macrophages (TAMs) and tumor-associated neutrophils (TANs) can control cancer growth and exist in almost all solid neoplasms. The cells are known to descend from immature monocytic and granulocytic cells, respectively, which are produced in the bone marrow. However, the spleen is also a recently identified reservoir of monocytes, which can play a significant role in the inflammatory response that follows acute injury. Here, we evaluated the role of the splenic reservoir in a genetic mouse model of lung adenocarcinoma driven by activation of oncogenic Kras and inactivation of p53. We found that high numbers of TAM and TAN precursors physically relocated from the spleen to the tumor stroma, and that recruitment of tumor-promoting spleen-derived TAMs required signaling of the chemokine receptor CCR2. Also, removal of the spleen, either before or after tumor initiation, reduced TAM and TAN responses significantly and delayed tumor growth. The mechanism by which the spleen was able to maintain its reservoir capacity throughout tumor progression involved, in part, local accumulation in the splenic red pulp of typically rare extramedullary hematopoietic stem and progenitor cells, notably granulocyte and macrophage progenitors, which produced CD11b(+) Ly-6C(hi) monocytic and CD11b(+) Ly-6G(hi) granulocytic cells locally. Splenic granulocyte and macrophage progenitors and their descendants were likewise identified in clinical specimens. The present study sheds light on the origins of TAMs and TANs, and positions the spleen as an important extramedullary site, which can continuously supply growing tumors with these cells.


Subject(s)
Macrophages/immunology , Neoplasms/pathology , Neutrophils/immunology , Animals , Humans , Mice , Neoplasms/immunology , Spleen/immunology , Spleen/pathology
18.
Mol Ther Nucleic Acids ; 1: e4, 2012 Jan 24.
Article in English | MEDLINE | ID: mdl-23344621

ABSTRACT

Leukocytes are central regulators of inflammation and the target cells of therapies for key diseases, including autoimmune, cardiovascular, and malignant disorders. Efficient in vivo delivery of small interfering RNA (siRNA) to immune cells could thus enable novel treatment strategies with broad applicability. In this report, we develop systemic delivery methods of siRNA encapsulated in lipid nanoparticles (LNP) for durable and potent in vivo RNA interference (RNAi)-mediated silencing in myeloid cells. This work provides the first demonstration of siRNA-mediated silencing in myeloid cell types of nonhuman primates (NHPs) and establishes the feasibility of targeting multiple gene targets in rodent myeloid cells. The therapeutic potential of these formulations was demonstrated using siRNA targeting tumor necrosis factor-α (TNFα) which induced substantial attenuation of disease progression comparable to a potent antibody treatment in a mouse model of rheumatoid arthritis (RA). In summary, we demonstrate a broadly applicable and therapeutically relevant platform for silencing disease genes in immune cells.

19.
Nat Biotechnol ; 29(11): 1005-10, 2011 Oct 09.
Article in English | MEDLINE | ID: mdl-21983520

ABSTRACT

Excessive and prolonged activity of inflammatory monocytes is a hallmark of many diseases with an inflammatory component. In such conditions, precise targeting of these cells could be therapeutically beneficial while sparing many essential functions of the innate immune system, thus limiting unwanted effects. Inflammatory monocytes-but not the noninflammatory subset-depend on the chemokine receptor CCR2 for localization to injured tissue. Here we present an optimized lipid nanoparticle and a CCR2-silencing short interfering RNA that, when administered systemically in mice, show rapid blood clearance, accumulate in spleen and bone marrow, and localize to monocytes. Efficient degradation of CCR2 mRNA in monocytes prevents their accumulation in sites of inflammation. Specifically, the treatment attenuates their number in atherosclerotic plaques, reduces infarct size after coronary artery occlusion, prolongs normoglycemia in diabetic mice after pancreatic islet transplantation, and results in reduced tumor volumes and lower numbers of tumor-associated macrophages.


Subject(s)
Gene Silencing , Inflammation/therapy , Macrophages/drug effects , Nanoparticles , RNA, Small Interfering/therapeutic use , Receptors, CCR2/antagonists & inhibitors , Animals , Atherosclerosis/therapy , Blood Glucose , Diabetes Mellitus/surgery , Diabetes Mellitus/therapy , Disease Models, Animal , Graft Survival/genetics , Humans , Islets of Langerhans Transplantation , Mice , Mice, Inbred C57BL , Monocytes/metabolism , Myocardial Infarction/prevention & control , Myocardial Infarction/therapy , Nanoparticles/chemistry , Receptors, CCR2/genetics
20.
Mol Ther ; 19(12): 2186-200, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21971424

ABSTRACT

Lipid nanoparticles (LNPs) are currently the most effective in vivo delivery systems for silencing target genes in hepatocytes employing small interfering RNA. Antigen-presenting cells (APCs) are also potential targets for LNP siRNA. We examined the uptake, intracellular trafficking, and gene silencing potency in primary bone marrow macrophages (bmMΦ) and dendritic cells of siRNA formulated in LNPs containing four different ionizable cationic lipids namely DLinDAP, DLinDMA, DLinK-DMA, and DLinKC2-DMA. LNPs containing DLinKC2-DMA were the most potent formulations as determined by their ability to inhibit the production of GAPDH target protein. Also, LNPs containing DLinKC2-DMA were the most potent intracellular delivery agents as indicated by confocal studies of endosomal versus cytoplamic siRNA location using fluorescently labeled siRNA. DLinK-DMA and DLinKC2-DMA formulations exhibited improved gene silencing potencies relative to DLinDMA but were less toxic. In vivo results showed that LNP siRNA systems containing DLinKC2-DMA are effective agents for silencing GAPDH in APCs in the spleen and peritoneal cavity following systemic administration. Gene silencing in APCs was RNAi mediated and the use of larger LNPs resulted in substantially reduced hepatocyte silencing, while similar efficacy was maintained in APCs. These results are discussed with regard to the potential of LNP siRNA formulations to treat immunologically mediated diseases.


Subject(s)
Antigen-Presenting Cells/metabolism , Cations/chemistry , Gene Silencing , Glyceraldehyde-3-Phosphate Dehydrogenases/antagonists & inhibitors , Lipids/administration & dosage , Nanoparticles/administration & dosage , RNA, Small Interfering/administration & dosage , Animals , Blotting, Western , Bone Marrow , Cells, Cultured , Dendritic Cells/cytology , Dendritic Cells/metabolism , Endocytosis , Flow Cytometry , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Hepatocytes/cytology , Hepatocytes/metabolism , Leukocyte Common Antigens/antagonists & inhibitors , Leukocyte Common Antigens/genetics , Leukocyte Common Antigens/metabolism , Liposomes , Liver/metabolism , Macrophages/cytology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Nanoparticles/chemistry , RNA Interference , RNA, Small Interfering/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...