Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Commun Signal ; 21(1): 244, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37726815

ABSTRACT

The extracellular matrix (ECM) is a crucial component of the stem cell microenvironment, or stem-cell niches, and contributes to the regulation of cell behavior and fate. Accumulating evidence indicates that different types of stem cells possess a large variety of molecules responsible for interactions with the ECM, mediating specific epigenetic rearrangements and corresponding changes in transcriptome profile. Signals from the ECM are crucial at all stages of ontogenesis, including embryonic and postnatal development, as well as tissue renewal and repair. The ECM could regulate stem cell transition from a quiescent state to readiness to perceive the signals of differentiation induction (competence) and the transition between different stages of differentiation (commitment). Currently, to unveil the complex networks of cellular signaling from the ECM, multiple approaches including screening methods, the analysis of the cell matrixome, and the creation of predictive networks of protein-protein interactions based on experimental data are used. In this review, we consider the existing evidence regarded the contribution of ECM-induced intracellular signaling pathways into the regulation of stem cell differentiation focusing on mesenchymal stem/stromal cells (MSCs) as well-studied type of postnatal stem cells totally depended on signals from ECM. Furthermore, we propose a system biology-based approach for the prediction of ECM-mediated signal transduction pathways in target cells. Video Abstract.


Subject(s)
Mesenchymal Stem Cells , Stem Cells , Cell Differentiation , Extracellular Matrix , Signal Transduction
2.
Exp Gerontol ; 177: 112176, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37080342

ABSTRACT

The aim of the study was to investigate the relationship between established clinical systemic biomarkers of ageing and the development of age-associated diseases and senescent cell biomarkers at tissue and cellular levels. Thirty-eight patients (mean age 70 ± 4.9 years) who were assessed for traditional risk factors for cardiovascular diseases were included. From all patients we obtained biomaterials (peripheral blood, skin, subcutaneous fatty tissue) and isolated different cell types (peripheral blood mononuclear cells (PBMC), fibroblasts (FB) and mesenchymal stem/stromal cells (MSC)). Isolated cells were analyzed using several senescent cells biomarkers such as telomere length and telomerase activity, proliferation rate, cell cycle inhibitor expression (p16 and p21), b-galactosidase activity, gH2AX expression. CD34+ cell content in peripheral blood was determined by flow cytometry. Systemic senescent cell-associated factors (insulin-like growth factor 1 (IGF-1), fibroblast growth factor 21 (FGF-21), osteoprogerin, ferritin, soluble vascular cell adhesion molecule (VCAM-1), intercellular adhesion molecule 1 (ICAM-1)) in peripheral blood as well as senescence-associated secretory phenotype (SASP) components in MSC and FB secretome were evaluated by ELISA. Skin and adipose tissue biopsy samples were analyzed histologically to assess senescent cell markers. A strong significant association of tissue p16 expression with age (r = 0.600, p < 0.001), pulse wave velocity (PWV) (r = 0.394, p = 0.015), vascular cell adhesion molecule (VCAM-1) content (r = 0.312, p = 0.006) in the systemic blood stream and p16 mRNA level in the blood mononuclear cells (MNCs) (r = 0.380, p = 0.046) were confirmed by correlation analysis. Statistically significant correlations were found with indicators of FBs and MSCs proliferation in culture and acquisition of SASP by the cells. Thus, p16 expression in tissues correlated significantly with interleukin-6 (IL-6) (r = 0.485, p < 0.05) and monocyte chemoattractant protein type 1 (MCP-1) (r = 0.372, p < 0.05) secretion by isolated cells. The results of regression analysis confirmed that, regardless of age, the expression of p16 was associated with the proliferation of isolated cells and IL-6 within SASP. Based on these findings, two models have been proposed to predict the level of p16 expression in tissues from the levels of other markers of senescent cell accumulation determined by non-invasive methods and available in clinical practice.


Subject(s)
Cellular Senescence , Vascular Cell Adhesion Molecule-1 , Cellular Senescence/genetics , Leukocytes, Mononuclear/metabolism , Interleukin-6 , Pulse Wave Analysis , Biomarkers/metabolism , Cells, Cultured
4.
Front Cell Dev Biol ; 10: 1050489, 2022.
Article in English | MEDLINE | ID: mdl-36467400

ABSTRACT

Multipotent mesenchymal stromal cells (MSCs) maintain cellular homeostasis and regulate tissue renewal and repair both by differentiating into mesodermal lineage, e.g., adipocytes, or managing the functions of differentiated cells. Insulin is a key physiological inducer of MSC differentiation into adipocytes, and disturbances in MSC insulin sensitivity could negatively affect adipose tissue renewal. During aging, regulation and renewal of adipose tissue cells may be disrupted due to the altered insulin signaling and differentiation potential of senescent MSCs, promoting the development of serious metabolic diseases, including metabolic syndrome and obesity. However, the potential mechanisms mediating the dysfunction of adipose-derived senescent MSC remains unclear. We explored whether aging could affect the adipogenic potential of human adipose tissue-derived MSCs regulated by insulin. Age-associated senescent MSCs (isolated from donors older than 65 years) and MSCs in replicative senescence (long-term culture) were treated by insulin to induce adipogenic differentiation, and the efficiency of the process was compared to MSCs from young donors. Insulin-dependent signaling pathways were explored in these cells. We also analyzed the involvement of extracellular vesicles secreted by MSCs (MSC-EVs) into the regulation of adipogenic differentiation and insulin signaling of control and senescent cells. Also the microRNA profiles of MSC-EVs from aged and young donors were compared using targeted PCR arrays. Both replicatively and chronologically senescent MSCs showed a noticeably decreased adipogenic potential. This was associated with insulin resistance of MSCs from aged donors caused by the increase in the basal level of activation of crucial insulin-dependent intracellular effectors ERK1/2 and Akt. To assess the impact of the paracrine cross-talk of MSCs, we analyzed microRNAs profile differences in MSC-EVs and revealed that senescent MSCs produced EVs with increased content of miRNAs targeting components of insulin-dependent signaling cascade PTEN, MAPK1, GAREM1 and some other targets. We also confirmed these data by differentiation of control MSCs in the presence of EVs from senescent cells and vice versa. Thus, aging attenuated the adipogenic potential of MSCs due to autocrine or paracrine-dependent induction of insulin resistance associated with the specific changes in MSC-EV cargo.

5.
Biomedicines ; 9(10)2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34680406

ABSTRACT

Activation of multipotent mesenchymal stromal cells (MSCs) is a central part of tissue response to damage. Platelet-derived growth factor (PDGF-BB), which is abundantly released in the damaged area, potently stimulates the proliferation and migration of MSCs. Recent evidence indicates that tissue injury is associated with the accumulation of senescent cells, including ones of MSC origin. Therefore, we hypothesized that PDGF-BB induces MSC senescence. To evaluate mechanisms of early activation of MSCs by PDGF-BB, we performed transcriptome profiling of human MSCs isolated from adipose tissue after exposure to PDGF-BB for 12 and 24 h. We demonstrated that PDGF-BB induced the expression of several genes encoding the components of senescence-associated secretory phenotype (SASP) in MSCs such as plasminogen activator inhibitor-1 (PAI-1), urokinase-type plasminogen activator and its receptor (uPA and uPAR), and some matrix metalloproteases. However, further experimental validation of transcriptomic data clearly indicated that PDGF-BB exerted mitogenic and pro-migratory effects on MSCs, and augmented their pro-angiogenic activity, but did not significantly stimulate MSC senescence.

6.
Biomedicines ; 9(9)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34572378

ABSTRACT

Multipotent mesenchymal stem/stromal cells (MSC) are one of the crucial regulators of regeneration and tissue repair and possess an intrinsic program from self-organization mediated by condensation, migration and self-patterning. The ability to self-organize has been successfully exploited in tissue engineering approaches using cell sheets (CS) and their modifications. In this study, we used CS as a model of human MSC spontaneous self-organization to demonstrate its structural, transcriptomic impact and multipotent stromal cell commitment. We used CS formation to visualize MSC self-organization and evaluated the role of the Rho-GTPase pathway in spontaneous condensation, resulting in a significant anisotropy of the cell density within the construct. Differentiation assays were carried out using conventional protocols, and microdissection and RNA-sequencing were applied to establish putative targets behind the observed phenomena. The differentiation of MSC to bone and cartilage, but not to adipocytes in CS, occurred more effectively than in the monolayer. RNA-sequencing indicated transcriptional shifts involving the activation of the Rho-GTPase pathway and repression of SREBP, which was concordant with the lack of adipogenesis in CS. Eventually, we used an inhibitory analysis to validate our findings and suggested a model where the self-organization of MSC defined their commitment and cell fate via ROCK1/2 and SREBP as major effectors under the putative switching control of AMP kinase.

7.
Front Cell Dev Biol ; 9: 662078, 2021.
Article in English | MEDLINE | ID: mdl-34422797

ABSTRACT

Modern biomedical science still experiences a significant need for easy and reliable sources of human cells. They are used to investigate pathological processes underlying disease, conduct pharmacological studies, and eventually applied as a therapeutic product in regenerative medicine. For decades, the pool of adult mesenchymal stem/stromal cells (MSCs) remains a promising source of stem and progenitor cells. Their isolation is more feasible than most other stem cells from human donors, yet they have a fair share of drawbacks. They include significant variability between donors, loss of potency, and transformation during long-term culture, which may impact the efficacy and reproducibility of research. One possible solution is a derivation of immortalized MSCs lines which receive a broader use in many medical and biological studies. In the present work, we demonstrated that in the most widely spread commercially available hTERT-immortalized MSCs cell line ASC52telo, sensitivity to hormonal stimuli was reduced, affecting their differentiation efficacy. Furthermore, we found that immortalized MSCs have impaired insulin-dependent and cAMP-dependent signaling, which impairs their adipogenic, but not osteogenic or chondrogenic, potential under experimental conditions. Our findings indicate that hTERT-immortalized MSCs may present a suboptimal choice for studies involving modeling or investigation of hormonal sensitivity.

8.
Front Cell Dev Biol ; 8: 555378, 2020.
Article in English | MEDLINE | ID: mdl-33072743

ABSTRACT

Extracellular matrix (ECM) provides both structural support and dynamic microenvironment for cells regulating their behavior and fate. As a critical component of stem cell niche ECM maintains stem cells and activates their proliferation and differentiation under specific stimuli. Mesenchymal stem/stromal cells (MSCs) regulate tissue-specific stem cell functions locating in their immediate microenvironment and producing various bioactive factors, including ECM components. We evaluated the ability of MSC-produced ECM to restore stem and progenitor cell microenvironment in vitro and analyzed the possible mechanisms of its effects. Human MSC cell sheets were decellularized by different agents (detergents, enzymes, and apoptosis inductors) to select the optimized combination (CHAPS and DNAse I) based on the conservation of decellularized ECM (dECM) structure and effectiveness of DNA removal. Prepared dECM was non-immunogenic, supported MSC proliferation and formation of larger colonies in colony-forming unit-assay. Decellularized ECM effectively promoted MSC trilineage differentiation (adipogenic, osteogenic, and chondrogenic) compared to plastic or plastic covered by selected ECM components (collagen, fibronectin, laminin). Interestingly, dECM produced by human fibroblasts could not enhance MSC differentiation like MSC-produced dECM, indicating cell-specific functionality of dECM. We demonstrated the significant integrin contribution in dECM-cell interaction by blocking the stimulatory effects of dECM with RGD peptide and suggested the involvement of key intracellular signaling pathways activation (pERK/ERK and pFAK/FAK axes, pYAP/YAP and beta-catenin) in the observed processes based on the results of inhibitory analysis. Taken together, we suppose that MSC-produced dECM may mimic stem cell niche components in vitro and maintain multipotent progenitor cells to insure their effective response to external differentiating stimuli upon activation. The obtained data provide more insights into the possible role of MSC-produced ECM in stem and progenitor cell regulation within their niches. Our results are also useful for the developing of dECM-based cell-free products for regenerative medicine.

SELECTION OF CITATIONS
SEARCH DETAIL
...