Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 43(6): 114308, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38829740

ABSTRACT

Dendritic cell (DC) progenitors adapt their transcriptional program during development, generating different subsets. How chromatin modifications modulate these processes is unclear. Here, we investigate the impact of histone deacetylation on DCs by genetically deleting histone deacetylase 1 (HDAC1) or HDAC2 in hematopoietic progenitors and CD11c-expressing cells. While HDAC2 is not critical for DC development, HDAC1 deletion impairs pro-pDC and mature pDC generation and affects ESAM+cDC2 differentiation from tDCs and pre-cDC2s, whereas cDC1s are unchanged. HDAC1 knockdown in human hematopoietic cells also impairs cDC2 development, highlighting its crucial role across species. Multi-omics analyses reveal that HDAC1 controls expression, chromatin accessibility, and histone acetylation of the transcription factors IRF4, IRF8, and SPIB required for efficient development of cDC2 subsets. Without HDAC1, DCs switch immunologically, enhancing tumor surveillance through increased cDC1 maturation and interleukin-12 production, driving T helper 1-mediated immunity and CD8+ T cell recruitment. Our study reveals the importance of histone acetylation in DC development and anti-tumor immunity, suggesting DC-targeted therapeutic strategies for immuno-oncology.


Subject(s)
Cell Differentiation , Dendritic Cells , Histone Deacetylase 1 , Dendritic Cells/metabolism , Dendritic Cells/immunology , Histone Deacetylase 1/metabolism , Animals , Humans , Mice , Mice, Inbred C57BL , Acetylation , Neoplasms/immunology , Neoplasms/pathology , Histones/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Histone Deacetylase 2/metabolism , Interleukin-12/metabolism
2.
EMBO Mol Med ; 15(7): e16758, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37226685

ABSTRACT

FAM3C/ILEI is an important cytokine for tumor progression and metastasis. However, its involvement in inflammation remains elusive. Here, we show that ILEI protein is highly expressed in psoriatic lesions. Inducible keratinocyte-specific ILEI overexpression in mice (K5-ILEIind ) recapitulates many aspects of psoriasis following TPA challenge, primarily manifested by impaired epidermal differentiation and increased neutrophil recruitment. Mechanistically, ILEI triggers Erk and Akt signaling, which then activates STAT3 via Ser727 phosphorylation. Keratinocyte-specific ILEI deletion ameliorates TPA-induced skin inflammation. A transcriptomic ILEI signature obtained from the K5-ILEIind model shows enrichment in several signaling pathways also found in psoriasis and identifies urokinase as a targetable enzyme to counteract ILEI activity. Pharmacological inhibition of urokinase in TPA-induced K5-ILEIind mice results in significant improvement of psoriasiform symptoms by reducing ILEI secretion. The ILEI signature distinguishes psoriasis from healthy skin with uPA ranking among the top "separator" genes. Our study identifies ILEI as a key driver in psoriasis, indicates the relevance of ILEI-regulated genes for disease manifestation, and shows the clinical impact of ILEI and urokinase as novel potential therapeutic targets in psoriasis.


Subject(s)
Psoriasis , Urokinase-Type Plasminogen Activator , Mice , Animals , Urokinase-Type Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/metabolism , Cytokines/metabolism , Keratinocytes , Signal Transduction
3.
Sci Signal ; 15(764): eabq5389, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36512641

ABSTRACT

Promoters of antimicrobial genes function as logic boards, integrating signals of innate immune responses. One such set of genes is stimulated by interferon (IFN) signaling, and the expression of these genes [IFN-stimulated genes (ISGs)] can be further modulated by cell stress-induced pathways. Here, we investigated the global effect of stress-induced p38 mitogen-activated protein kinase (MAPK) signaling on the response of macrophages to IFN. In response to cell stress that coincided with IFN exposure, the p38 MAPK-activated transcription factors CREB and c-Jun, in addition to the IFN-activated STAT family of transcription factors, bound to ISGs. In addition, p38 MAPK signaling induced activating histone modifications at the loci of ISGs and stimulated nuclear translocation of the CREB coactivator CRTC3. These actions synergistically enhanced ISG expression. Disrupting this synergy with p38 MAPK inhibitors improved the viability of macrophages infected with Listeria monocytogenes. Our findings uncover a mechanism of transcriptional synergism and highlight the biological consequences of coincident stress-induced p38 MAPK and IFN-stimulated signal transduction.


Subject(s)
Interferon-gamma , Interferons , Interferons/genetics , Interferons/pharmacology , Interferons/metabolism , Interferon-gamma/metabolism , Macrophages/metabolism , Signal Transduction , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , Transcription, Genetic , Transcription Factors/metabolism , Phosphorylation
4.
Life (Basel) ; 11(11)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34833113

ABSTRACT

The skin is the outermost barrier protecting the body from pathogenic invasion and environmental insults. Its breakdown initiates the start of skin inflammation. The epidermal growth factor (EGFR) on keratinocytes protects this barrier, and its dysfunction leads to atopic dermatitis-like skin disease. One of the initial cytokines expressed upon skin barrier breach and during atopic dermatitis is TSLP. Here, we describe the expression and secretion of TSLP during EGFR inhibition and present an ex-vivo model, which mimics the early events after barrier insult. Skin explants floated on culture medium at 32 °C released TSLP in parallel to the activation of the resident Langerhans cell network. We could further show the up-regulation and activation of the AP-1 family of transcription factors during atopic-like skin inflammation and its involvement in TSLP production from the skin explant cultures. Inhibition of the c-Jun N-terminal kinase pathway led to a dose-dependent blunting of TSLP release. These data indicate the involvement of AP-1 during the early stages of atopic-like skin inflammation and highlight a novel therapeutic approach by targeting it. Therefore, skin explant cultures mimic the early events during skin barrier immunity and provide a suitable model to test therapeutic intervention.

5.
EMBO Mol Med ; 13(4): e12409, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33724710

ABSTRACT

Toll-like receptor (TLR) stimulation induces innate immune responses involved in many inflammatory disorders including psoriasis. Although activation of the AP-1 transcription factor complex is common in TLR signaling, the specific involvement and induced targets remain poorly understood. Here, we investigated the role of c-Jun/AP-1 protein in skin inflammation following TLR7 activation using human psoriatic skin, dendritic cells (DC), and genetically engineered mouse models. We show that c-Jun regulates CCL2 production in DCs leading to impaired recruitment of plasmacytoid DCs to inflamed skin after treatment with the TLR7/8 agonist Imiquimod. Furthermore, deletion of c-Jun in DCs or chemical blockade of JNK/c-Jun signaling ameliorates psoriasis-like skin inflammation by reducing IL-23 production in DCs. Importantly, the control of IL-23 and CCL2 by c-Jun is most pronounced in murine type-2 DCs. CCL2 and IL-23 expression co-localize with c-Jun in type-2/inflammatory DCs in human psoriatic skin and JNK-AP-1 inhibition reduces the expression of these targets in TLR7/8-stimulated human DCs. Therefore, c-Jun/AP-1 is a central driver of TLR7-induced immune responses by DCs and JNK/c-Jun a potential therapeutic target in psoriasis.


Subject(s)
Dendritic Cells , Transcription Factor AP-1 , Animals , Imiquimod , Inflammation , Interleukin-23 , Mice
6.
Cell Death Differ ; 28(8): 2404-2420, 2021 08.
Article in English | MEDLINE | ID: mdl-33758366

ABSTRACT

Dendritic cell (DC) development is orchestrated by lineage-determining transcription factors (TFs). Although, members of the activator-protein-1 (AP-1) family, including Batf3, have been implicated in conventional (c)DC specification, the role of Jun proteins is poorly understood. Here, we identified c-Jun and JunB as essential for cDC1 fate specification and function. In mice, Jun proteins regulate extrinsic and intrinsic pathways, which control CD8α cDC1 diversification, whereas CD103 cDC1 development is unaffected. The loss of c-Jun and JunB in DC progenitors diminishes the CD8α cDC1 pool and thus confers resistance to Listeria monocytogenes infection. Their absence in CD8α cDC1 results in impaired TLR triggering and antigen cross-presentation. Both TFs are required for the maintenance of the CD8α cDC1 subset and suppression of cDC2 identity on a transcriptional and phenotypic level. Taken together, these results demonstrate the essential role of c-Jun and JunB in CD8α cDC1 diversification, function, and maintenance of their identity.


Subject(s)
Dendritic Cells/metabolism , Transcription Factor AP-1/metabolism , Transcription Factors/metabolism , Animals , Cell Differentiation , Mice
7.
EMBO Mol Med ; 10(11)2018 11.
Article in English | MEDLINE | ID: mdl-30361264

ABSTRACT

Osteosarcoma (OS) is a rare tumor of the bone occurring mainly in young adults accounting for 5% of all childhood cancers. Because of the limited therapeutic options, there has been no survival improvement for OS patients in the past 40 years. The epidermal growth factor receptor (EGFR) is highly expressed in OS; however, its clinical relevance is unclear. Here, we employed an autochthonous c-Fos-dependent OS mouse model (H2-c-fosLTR) and human OS tumor biopsies for preclinical studies aimed at identifying novel biomarkers and therapeutic benefits of anti-EGFR therapies. We show that EGFR deletion/inhibition results in reduced tumor formation in H2-c-fosLTR mice by directly inhibiting the proliferation of cancer-initiating osteoblastic cells by a mechanism involving RSK2/CREB-dependent c-Fos expression. Furthermore, OS patients with co-expression of EGFR and c-Fos exhibit reduced overall survival. Preclinical studies using human OS xenografts revealed that only tumors expressing both EGFR and c-Fos responded to anti-EGFR therapy demonstrating that c-Fos can be considered as a novel biomarker predicting response to anti-EGFR treatment in OS patients.


Subject(s)
Bone Neoplasms/metabolism , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cyclic AMP Response Element-Binding Protein/metabolism , ErbB Receptors/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Signal Transduction , Animals , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Cell Survival , ErbB Receptors/genetics , Gene Deletion , Humans , Ligands , Mice , Mitogen-Activated Protein Kinases/metabolism , Osteoblasts/metabolism , Osteosarcoma/metabolism , Osteosarcoma/pathology , Phosphorylation , Proto-Oncogene Proteins c-fos/genetics , Survival Analysis
8.
Methods Mol Biol ; 1267: 217-50, 2015.
Article in English | MEDLINE | ID: mdl-25636471

ABSTRACT

The skin is the largest organ of the mammalian body, made up of multiple layers, which include the epidermis, dermis, and subcutis (Alam and Ratner, N Engl J Med 344(13):975-983, 2001). The human interfollicular epidermis can be subdivided into five different layers: (1) stratum basale, (2) stratum spinosum, (3) stratum granulosum, (4) stratum lucidum, and (5) stratum corneum, all originating from basal keratinocytes by differentiation (Hameetman et al., BMC cancer 13:58, 2013; Ramirez et al., Differentiation 58(1):53-64, 1994). The epidermis is also able to generate different appendages: hair follicles (HF) and their associated sebaceous glands (Sibilia et al., Cell 102(2):211-220, 2000) as well as sweat glands (Luetteke et al., Genes Dev 8(4):399-413, 1994). The skin has important functions in several biological processes like environmental barrier, tissue regeneration, hair cycling, and wound repair. During these processes, stem cells from the interfollicular epidermis and from the hair follicle bulge are activated to renew the epidermis or hair. The epidermis and hair undergo continuous homeostatic regeneration and mutations, upon mutations which disturb the balance of homeostatic regeneration of epidermis and hair and lead to enhanced proliferation of keratinocytes, development of skin cancer is developed. Tumors that arise in the skin are mainly of three types: malignant melanoma, arising from melanocytes, basal cell carcinoma (BCC), and squamous cell carcinoma (SCC), the latter two both arising from keratinocytes or hair follicle cells. In this chapter, we will describe some genetically engineered mouse models (GEMM) that aim at modeling human BCC and SCC and their respective precancerous lesions. We will describe the experimental approaches used in our laboratory to analyze tumor-bearing mice focusing on methods necessary for the induction of tumor growth as well as for the molecular and histological analysis of tumor tissue.


Subject(s)
Skin Neoplasms , 9,10-Dimethyl-1,2-benzanthracene/pharmacology , Animals , Carcinoma, Squamous Cell/chemically induced , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Culture Techniques , DNA/genetics , DNA/isolation & purification , Epidermis/drug effects , Epidermis/pathology , Humans , Keratinocytes/drug effects , Keratinocytes/pathology , Mice , Skin Neoplasms/chemically induced , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Staining and Labeling , Tamoxifen/pharmacology , Tetradecanoylphorbol Acetate/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...