Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Antiviral Res ; 221: 105779, 2024 01.
Article in English | MEDLINE | ID: mdl-38070830

ABSTRACT

BACKGROUND: In the tolerogenic liver, inadequate or ineffective interferon signaling fails to clear chronic HBV infection. Lambda IFNs (IFNL) bind the interferon lambda receptor-1 (IFNLR1) which dimerizes with IL10RB to induce transcription of antiviral interferon-stimulated genes (ISG). IFNLR1 is expressed on hepatocytes, but low expression may limit the strength and antiviral efficacy of IFNL signaling. Three IFNLR1 transcriptional variants are detected in hepatocytes whose role in regulation of IFNL signaling is unclear: a full-length and signaling-capable form (isoform 1), a form that lacks a portion of the intracellular JAK1 binding domain (isoform 2), and a secreted form (isoform 3), the latter two predicted to be signaling defective. We hypothesized that altering expression of IFNLR1 isoforms would differentially impact the hepatocellular response to IFNLs and HBV replication. METHODS: Induced pluripotent stem-cell derived hepatocytes (iHeps) engineered to contain FLAG-tagged, doxycycline-inducible IFNLR1 isoform constructs were HBV-infected then treated with IFNL3 followed by assessment of gene expression, HBV replication, and cellular viability. RESULTS: Minimal overexpression of IFNLR1 isoform 1 markedly augmented ISG expression, induced de novo proinflammatory gene expression, and enhanced inhibition of HBV replication after IFNL treatment without adversely affecting cell viability. In contrast, overexpression of IFNLR1 isoform 2 or 3 partially augmented IFNL-induced ISG expression but did not support proinflammatory gene expression and minimally impacted HBV replication. CONCLUSIONS: IFNLR1 isoforms differentially influence IFNL-induced gene expression and HBV replication in hepatocytes. Regulated IFNLR1 expression in vivo could limit the capacity of this pathway to counteract HBV replication.


Subject(s)
Hepatitis B virus , Interferon Lambda , Interferons/pharmacology , Hepatocytes , Virus Replication , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Isoforms/pharmacology , Gene Expression
2.
Viruses ; 15(3)2023 02 25.
Article in English | MEDLINE | ID: mdl-36992341

ABSTRACT

Interferon lambdas (IFNLs) are innate immune cytokines that induce antiviral cellular responses by signaling through a heterodimer composed of IL10RB and the interferon lambda receptor 1 (IFNLR1). Multiple IFNLR1 transcriptional variants are expressed in vivo and are predicted to encode distinct protein isoforms whose function is not fully established. IFNLR1 isoform 1 has the highest relative transcriptional expression and encodes the full-length functional form that supports canonical IFNL signaling. IFNLR1 isoforms 2 and 3 have lower relative expression and are predicted to encode signaling-defective proteins. To gain insight into IFNLR1 function and regulation, we explored how altering relative expression of IFNLR1 isoforms influenced the cellular response to IFNLs. To achieve this, we generated and functionally characterized stable HEK293T clones expressing doxycycline-inducible FLAG-tagged IFNLR1 isoforms. Minimal FLAG-IFNLR1 isoform 1 overexpression markedly increased IFNL3-dependent expression of antiviral and pro-inflammatory genes, a phenotype that could not be further augmented by expressing higher levels of FLAG-IFNLR1 isoform 1. Expression of low levels of FLAG-IFNLR1 isoform 2 led to partial induction of antiviral genes, but not pro-inflammatory genes, after IFNL3 treatment, a phenotype that was largely abrogated at higher FLAG-IFNLR1 isoform 2 expression levels. Expression of FLAG-IFNLR1 isoform 3 partially augmented antiviral gene expression after IFNL3 treatment. In addition, FLAG-IFNLR1 isoform 1 significantly reduced cellular sensitivity to the type-I IFN IFNA2 when overexpressed. These results identify a unique influence of canonical and non-canonical IFNLR1 isoforms on mediating the cellular response to interferons and provide insight into possible pathway regulation in vivo.


Subject(s)
Interferon Lambda , Receptors, Interferon , Humans , HEK293 Cells , Interferon Lambda/metabolism , Interferons , Protein Isoforms/genetics , Receptors, Interferon/genetics , Receptors, Interferon/metabolism , Antiviral Restriction Factors
3.
Front Cell Infect Microbiol ; 12: 767083, 2022.
Article in English | MEDLINE | ID: mdl-35463651

ABSTRACT

Background: Nontypeable Haemophilus influenzae (NTHi) is the most common bacterial otopathogen associated with otitis media (OM). NTHi persists in biofilms within the middle ears of children with chronic and recurrent OM. Australian Aboriginal children suffer exceptionally high rates of chronic and recurrent OM compared to non-Aboriginal children. NTHi protein vaccines comprised of antigens associated with both adhesion and persistence in a biofilm are under development and could be beneficial for children with chronic and recurrent OM. Understanding the ontogeny of natural antibody development to these antigens provides insight into the value of vaccinating with particular antigens. Methods: An in-house multiplex fluorescent bead immunoassay was used to measure serum IgG titres and avidity for three putative vaccine antigens: recombinant soluble PilA (rsPilA), ChimV4, and outer membrane protein 26 (OMP26) in sera from Australian Aboriginal otitis-prone children (n=77), non-Aboriginal otitis-prone children (n=70) and non-otitis-prone children (n=36). Serum IgG titres were adjusted for age, and geometric mean concentrations (GMCs) were compared between groups using a univariate analysis model. Antibody avidity was calculated as a relative avidity index and compared between groups using ANOVA. Results: Australian Aboriginal otitis-prone children had lower serum IgG titres to rsPilA and ChimV4 than non-Aboriginal otitis-prone children (p<0.001), and non-otitis-prone children (p<0.020). No differences were observed between serum IgG titres from non-Aboriginal otitis-prone children and non-otitis-prone children. There were also no differences in the proportion of high avidity IgG specific for these antigens between these groups. Serum IgG titres to OMP26 were similar between all groups (p>0.670) although otitis-prone children had a higher proportion of high avidity antibodies to this antigen. Conclusions: Australian Aboriginal otitis-prone children had lower serum IgG titres to 2/3 major NTHi vaccine candidate antigens, suggesting these children are unable to develop persistent IgG responses due to repeated NTHi exposure. These reduced IgG titres may relate to earlier and more frequent exposure to diverse NTHi strains in Aboriginal children through carriage or infection. These data suggest that Aboriginal children may benefit from immunisation with vaccines containing these antigens to increase titres of protective antibodies.


Subject(s)
Haemophilus Infections , Haemophilus Vaccines , Otitis Media , Otitis , Antibodies, Bacterial , Australia , Child , Haemophilus Infections/microbiology , Haemophilus influenzae , Humans , Immunoglobulin G , Otitis Media/microbiology
4.
Cell ; 184(23): 5740-5758.e17, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34735796

ABSTRACT

Biofilms are community architectures adopted by bacteria inclusive of a self-formed extracellular matrix that protects resident bacteria from diverse environmental stresses and, in many species, incorporates extracellular DNA (eDNA) and DNABII proteins for structural integrity throughout biofilm development. Here, we present evidence that this eDNA-based architecture relies on the rare Z-form. Z-form DNA accumulates as biofilms mature and, through stabilization by the DNABII proteins, confers structural integrity to the biofilm matrix. Indeed, substances known to drive B-DNA into Z-DNA promoted biofilm formation whereas those that drive Z-DNA into B-DNA disrupted extant biofilms. Importantly, we demonstrated that the universal bacterial DNABII family of proteins stabilizes both bacterial- and host-eDNA in the Z-form in situ. A model is proposed that incorporates the role of Z-DNA in biofilm pathogenesis, innate immune response, and immune evasion.


Subject(s)
Bacteria/genetics , Biofilms , DNA, Bacterial/chemistry , Extracellular Matrix/metabolism , Extracellular Space/chemistry , Animals , Antibody Specificity , Bacterial Proteins/metabolism , Cell Line , Chinchilla , DNA, Cruciform , Deoxyribonucleases/metabolism , Extracellular Traps/metabolism , Humans , Tetradecanoylphorbol Acetate/pharmacology
5.
J Clin Invest ; 131(16)2021 08 16.
Article in English | MEDLINE | ID: mdl-34396989

ABSTRACT

Herein, we describe an extracellular function of the vertebrate high-mobility group box 1 protein (HMGB1) in the proliferation of bacterial biofilms. Within host cells, HMGB1 functions as a DNA architectural protein, similar to the ubiquitous DNABII family of bacterial proteins; despite that, these proteins share no amino acid sequence identity. Extracellularly, HMGB1 induces a proinflammatory immune response, whereas the DNABII proteins stabilize the extracellular DNA-dependent matrix that maintains bacterial biofilms. We showed that when both proteins converged on extracellular DNA within bacterial biofilms, HMGB1, unlike the DNABII proteins, disrupted biofilms both in vitro (including the high-priority ESKAPEE pathogens) and in vivo in 2 distinct animal models, albeit with induction of a strong inflammatory response that we attenuated by a single engineered amino acid change. We propose a model where extracellular HMGB1 balances the degree of induced inflammation and biofilm containment without excessive release of biofilm-resident bacteria.


Subject(s)
Biofilms/growth & development , HMGB1 Protein/immunology , Host Microbial Interactions/immunology , Animals , Bacterial Proteins/immunology , Chinchilla , DNA, Bacterial/immunology , Extracellular Matrix/immunology , Extracellular Traps/immunology , Female , Humans , Immunity, Innate , Male , Mice , Mice, Inbred C57BL , Models, Immunological , Neutrophils/immunology
6.
Viruses ; 13(6)2021 06 09.
Article in English | MEDLINE | ID: mdl-34207487

ABSTRACT

Hepatitis B virus (HBV) chronically infects over 250 million people worldwide and causes nearly 1 million deaths per year due to cirrhosis and liver cancer. Approved treatments for chronic infection include injectable type-I interferons and nucleos(t)ide reverse transcriptase inhibitors. A small minority of patients achieve seroclearance after treatment with type-I interferons, defined as sustained absence of detectable HBV DNA and surface antigen (HBsAg) antigenemia. However, type-I interferons cause significant side effects, are costly, must be administered for months, and most patients have viral rebound or non-response. Nucleos(t)ide reverse transcriptase inhibitors reduce HBV viral load and improve liver-related outcomes, but do not lower HBsAg levels or impart seroclearance. Thus, new therapeutics are urgently needed. Lambda interferons (IFNLs) have been tested as an alternative strategy to stimulate host antiviral pathways to treat HBV infection. IFNLs comprise an evolutionarily conserved innate immune pathway and have cell-type specific activity on hepatocytes, other epithelial cells found at mucosal surfaces, and some immune cells due to restricted cellular expression of the IFNL receptor. This article will review work that examined expression of IFNLs during acute and chronic HBV infection, the impact of IFNLs on HBV replication in vitro and in vivo, the association of polymorphisms in IFNL genes with clinical outcomes, and the therapeutic evaluation of IFNLs for the treatment of chronic HBV infection.


Subject(s)
Antiviral Agents/therapeutic use , Hepatitis B virus/immunology , Hepatitis B, Chronic/immunology , Hepatitis B/drug therapy , Hepatitis B/genetics , Interferons/genetics , Interferons/therapeutic use , Antiviral Agents/immunology , Hepatitis B/immunology , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/genetics , Hepatocytes/drug effects , Hepatocytes/virology , Humans , Immunity, Innate/genetics , Interferons/classification , Liver/virology
7.
Laryngoscope ; 131(10): E2698-E2704, 2021 10.
Article in English | MEDLINE | ID: mdl-33666254

ABSTRACT

OBJECTIVES/HYPOTHESIS: To evaluate the ability of humanized monoclonal antibody fragments directed against a bacterial DNABII protein plus ofloxacin delivered directly into the chinchilla middle ear via tympanostomy tube (TT) to enhance the ability of ofloxacin to eradicate biofilms formed by nontypeable Haemophilus influenzae (NTHI). STUDY DESIGN: A blinded pre-clinical study of comparative efficacy of single versus combinatorial treatment strategies. METHODS: NTHI was allowed to form biofilms in the middle ears of chinchillas prior to TT placement. Ofloxacin, humanized Fab fragments against a bacterial DNABII protein that disrupts biofilms or Fab fragments plus ofloxacin were instilled into the middle ear via TT. For two consecutive days, ofloxacin was delivered twice-a-day, Fab fragments were delivered once-a-day, or these treatments were combined. Relative biofilm resolution (as determined via two outcome measures) and eradication of viable NTHI were assessed 1-day later. RESULTS: Whereas ofloxacin alone did not resolve biofilms or eradicate NTHI from the middle ear, delivery of Fab fragments significantly reduced both biofilms and NTHI burden over this short course of treatment. Notably, co-delivery of ofloxacin plus humanized Fab fragments eradicated both NTHI and biofilms from the middle ear, an enhanced outcome compared to receipt of either treatment alone. CONCLUSION: This study demonstrated a powerful combinatorial approach to release bacteria from their protective biofilms and rapidly render them vulnerable to killing by a previously ineffective antibiotic. An approach to combine ofloxacin with humanized Fab fragments that disrupt biofilms has tremendous potential to quickly resolve chronic otorrhea suffered by children with chronic suppurative otitis media or chronic post-tympanostomy tube otorrhea and thereby improve their quality of life. LEVEL OF EVIDENCE: NA Laryngoscope, 131:E2698-E2704, 2021.


Subject(s)
Biofilms/drug effects , DNA-Binding Proteins/pharmacology , Haemophilus Infections/drug therapy , Immunoglobulin Fab Fragments/pharmacology , Ofloxacin/pharmacology , Otitis Media/drug therapy , Animals , Chinchilla , DNA, Bacterial , Haemophilus influenzae , Middle Ear Ventilation
8.
EBioMedicine ; 59: 102867, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32651162

ABSTRACT

BACKGROUND: Chronic and recurrent bacterial diseases are recalcitrant to treatment due to the ability of the causative agents to establish biofilms, thus development of means to prevent or resolve these structures are greatly needed. Our approach targets the DNABII family of bacterial DNA-binding proteins, which serve as critical structural components within the extracellular DNA scaffold of biofilms formed by all bacterial species tested to date. DNABII-directed antibodies rapidly disrupt biofilms and release the resident bacteria which promote their subsequent clearance by either host immune effectors or antibiotics that are now effective at a notably reduced concentration. METHODS: First, as a therapeutic approach, we used intact IgG or Fab fragments against a chimeric peptide immunogen designed to target protective epitopes within the DNA-binding tip domains of integration host factor to disrupt established biofilms in vitro and to mediate resolution of existing disease in vivo. Second, we performed preventative active immunisation with the chimeric peptide to induce the formation of antibody that blocks biofilm formation and disease development in a model of viral-bacterial superinfection. Further, toward the path for clinical use, we humanised a monoclonal antibody against the chimeric peptide immunogen, then characterised and validated that it maintained therapeutic efficacy. FINDINGS: We demonstrated efficacy of each approach in two well-established pre-clinical models of otitis media induced by the prevalent respiratory tract pathogen nontypeable Haemophilus influenzae, a common biofilm disease. INTERPRETATION: Collectively, our data revealed two approaches with substantive efficacy and potential for broad application to combat diseases with a biofilm component. FUNDING: Supported by R01 DC011818 to LOB and SDG.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antibodies, Monoclonal/pharmacology , Bacterial Proteins/antagonists & inhibitors , Biofilms/drug effects , DnaB Helicases/antagonists & inhibitors , Peptides/pharmacology , Animals , Antibodies, Monoclonal/immunology , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Bacterial Infections/prevention & control , Bacterial Proteins/immunology , DnaB Helicases/immunology , Drug Evaluation, Preclinical , Humans , Mice , Peptides/chemistry , Peptides/immunology , Rabbits
9.
Infect Immun ; 88(9)2020 08 19.
Article in English | MEDLINE | ID: mdl-32540869

ABSTRACT

Human rhinovirus (hRV) is frequently detected in the upper respiratory tract, and symptomatic infection is associated with an increased nasopharyngeal bacterial load, with subsequent development of secondary bacterial diseases. Nontypeable Haemophilus influenzae (NTHI) is a commensal bacterial species of the human nasopharynx; however, in the context of prior or concurrent upper respiratory tract viral infection, this bacterium commonly causes multiple diseases throughout the upper and lower respiratory tracts. The present study was conducted to determine the mechanism(s) by which hRV infection promotes the development of NTHI-induced diseases. We showed that hRV infection of polarized primary human airway epithelial cells resulted in increased adherence of NTHI, due in part to augmented expression of CEACAM1 and ICAM1, host cell receptors to which NTHI binds via engagement of multiple adhesins. Antibody blockade of these host cell receptors significantly reduced NTHI adherence. With a specific focus on the NTHI type IV pilus (T4P), which we have previously shown binds to ICAM1, an essential adhesin and virulence determinant, we next showed that T4P-directed antibody blockade significantly reduced NTHI adherence to hRV-infected airway cells and, further, that expression of this adhesin was required for the enhanced adherence observed. Collectively, these data provide a mechanism by which "the common cold" promotes diseases due to NTHI, and they add further support for the use of PilA (the majority subunit of T4P) as a vaccine antigen, since antibodies directed against PilA are expected to limit the notably increased bacterial load associated with hRV coinfection and thereby to prevent secondary NTHI-induced diseases of the respiratory tract.


Subject(s)
Adhesins, Bacterial/immunology , Bacterial Adhesion/immunology , Epithelial Cells/immunology , Fimbriae Proteins/immunology , Haemophilus influenzae/immunology , Host-Pathogen Interactions/immunology , Rhinovirus/immunology , Adhesins, Bacterial/genetics , Antibodies, Neutralizing/pharmacology , Antigens, CD/genetics , Antigens, CD/immunology , Cell Adhesion Molecules/antagonists & inhibitors , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/immunology , Epithelial Cells/microbiology , Epithelial Cells/virology , Fimbriae Proteins/genetics , Gene Expression Regulation/immunology , Haemophilus influenzae/growth & development , Host-Pathogen Interactions/genetics , Humans , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/immunology , Primary Cell Culture , Protein Binding , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/genetics , RNA, Messenger/immunology , Respiratory Mucosa/immunology , Respiratory Mucosa/microbiology , Respiratory Mucosa/virology , Rhinovirus/growth & development , Signal Transduction
10.
mSphere ; 5(3)2020 05 27.
Article in English | MEDLINE | ID: mdl-32461275

ABSTRACT

Nontypeable Haemophilus influenzae (NTHI) colonizes the human nasopharynx, but when the host immune response is dysregulated by upper respiratory tract (URT) virus infection, NTHI can gain access to more distal airway sites and cause disease. The NTHI type IV pilus (T4P) facilitates adherence, benign colonization, and infection, and its majority subunit PilA is in clinical trials as a vaccinogen. To further validate the strategy of immunization with PilA against multiple NTHI-induced diseases, it is important to demonstrate T4P expression under microenvironmental conditions that predispose to NTHI infection of the airway. Because URT infection commonly facilitates NTHI-induced diseases, we examined the influence of ongoing virus infection of respiratory tract epithelial cells on NTHI T4P expression in vitro Polarized primary human airway epithelial cells (HAEs) were sequentially inoculated with one of three common URT viruses, followed by NTHI. Use of a reporter construct revealed that NTHI upregulated pilA promoter activity when cultured with HAEs infected with adenovirus (AV), respiratory syncytial virus (RSV), or rhinovirus (RV) versus that in mock-infected HAEs. Consistent with these results, pilA expression and relative PilA/pilin abundance, as assessed by quantitative reverse transcription-PCR (qRT-PCR) and immunoblot, respectively, were also significantly increased when NTHI was cultured with virus-infected HAEs. Collectively, our data strongly suggest that under conditions of URT virus infection, PilA vaccinogen induction of T4P-directed antibodies is likely to be highly effective against multiple NTHI-induced diseases by interfering with T4P-mediated adherence. We hypothesize that this outcome could thereby limit or prevent the increased load of NTHI in the nasopharynx that characteristically precedes these coinfections.IMPORTANCE Nontypeable Haemophilus influenzae (NTHI) is the predominant bacterial causative agent of many chronic and recurrent diseases of the upper and lower respiratory tracts. NTHI-induced chronic rhinosinusitis, otitis media, and exacerbations of cystic fibrosis and chronic obstructive pulmonary disease often develop during or just after an upper respiratory tract viral infection. We have developed a vaccine candidate immunogen for NTHI-induced diseases that targets the majority subunit (PilA) of the type IV twitching pilus (T4P), which NTHI uses to adhere to respiratory tract epithelial cells and that also plays a role in disease. Here, we showed that NTHI cocultured with virus-infected respiratory tract epithelial cells express significantly more of the vaccine-targeted T4P than NTHI that encounters mock-infected (healthy) cells. These results strongly suggest that a vaccine strategy that targets the NTHI T4P will be effective under the most common predisposing condition: when the human host has a respiratory tract virus infection.


Subject(s)
Bacterial Adhesion , Coinfection , Epithelial Cells/microbiology , Epithelial Cells/virology , Fimbriae, Bacterial/genetics , Haemophilus influenzae/genetics , Cells, Cultured , Coinfection/microbiology , Coinfection/virology , Haemophilus influenzae/classification , Haemophilus influenzae/physiology , Humans , Respiratory Syncytial Viruses/pathogenicity , Respiratory System/cytology , Respiratory System/microbiology , Rhinovirus/pathogenicity
11.
mSphere ; 5(2)2020 04 15.
Article in English | MEDLINE | ID: mdl-32295873

ABSTRACT

The use of broad-spectrum antibiotics to treat diseases, such as the highly prevalent pediatric disease otitis media (OM), contributes significantly to the worldwide emergence of multiple-antibiotic-resistant microbes, and gut dysbiosis with diarrhea is a common adverse sequela. Moreover, for many diseases, like OM, biofilms contribute significantly to chronicity and recurrence, yet biofilm-resident bacteria are characteristically highly resistant to antibiotics. The most cost-effective way to both prevent and resolve diseases like OM, as well as begin to address the problem of growing antibiotic resistance, would be via the development of novel approaches to eradicate bacterial biofilms. Toward this goal, we designed a vaccine antigen that induces the formation of antibodies that prevent biofilm formation and, thereby, experimental OM in the middle ears of chinchillas by the predominant Gram-negative pathogen responsible for this disease, nontypeable Haemophilus influenzae These antibodies also significantly disrupt preexisting biofilms formed by diverse pathogens. Whereas preclinical data strongly support the continued development of this vaccine antigen, which targets an essential structural element of bacterial biofilms, a concern has been whether active immunization would also lead to unintended collateral damage in the form of an altered gut microbiome. To address this concern, we assessed changes in the microbiome of the chinchilla gut over time after the delivery of either amoxicillin-clavulanate, the standard of care for OM, or after immunization with our biofilm-targeted vaccine antigen either via a traditional subcutaneous route or via a novel noninvasive transcutaneous route. We show that differences in the abundance of specific taxa were found only in the stools of antibiotic-treated animals.IMPORTANCE The prevalence of chronic and recurrent diseases, combined with the overuse/abuse of antibiotics that has led to the sobering emergence of bacteria resistant to multiple antibiotics, has mandated that we develop novel approaches to better manage these diseases or, ideally, prevent them. Biofilms play a key role in the pathogenesis of chronic and recurrent bacterial diseases but are difficult, if not impossible, to eradicate with antibiotics. We developed a vaccine antigen designed to mediate biofilm disruption; however, it is also important that delivery of this vaccine does not induce collateral damage to the microbiome. The studies described here validated a vaccine approach that targets biofilms without the consequences of an altered gut microbiome. While delivery of the antibiotic most commonly given to children with ear infections did indeed alter the gut microbiome, as expected, immunization via traditional injection or by noninvasive delivery to the skin did not result in changes to the chinchilla gut microbiome.


Subject(s)
Antigens, Bacterial/administration & dosage , Biofilms/growth & development , Gastrointestinal Microbiome , Haemophilus Vaccines/administration & dosage , Otitis Media/prevention & control , Administration, Oral , Amoxicillin-Potassium Clavulanate Combination , Animals , Anti-Bacterial Agents , Antibodies, Bacterial/blood , Antigens, Bacterial/immunology , Chinchilla/microbiology , Cohort Studies , Ear, Middle/microbiology , Female , Haemophilus Infections/immunology , Haemophilus Infections/prevention & control , Haemophilus influenzae/immunology , Haemophilus influenzae/pathogenicity , Immunization , Male , Otitis Media/drug therapy , Otitis Media/microbiology
12.
Vaccine ; 38(10): 2378-2386, 2020 02 28.
Article in English | MEDLINE | ID: mdl-32001071

ABSTRACT

Otitis media (OM) is a very common pediatric disease and nontypeable Haemophilus influenzae (NTHI) is the predominant causative agent. We've developed a chimeric immunogen, chimV4, that simultaneously targets two NTHI adhesins, OMP P5 and the type IV pilus. Transcutaneous immunization (TCI) via bandaid with chimV4 plus the adjuvant dmLT provides significant protection against experimental NTHI-induced OM in chinchilla models. Herein, we now examined the durability and boostability of the induced immune response. Bandaid immunization with chimV4+dmLT followed by two sequential middle ear challenges with NTHI resulted in rapid bacterial clearance and significantly accelerated disease resolution. Moreover, TCI with chimV4+dmLT significantly increased mature B-cell phenotypes and antibody-secreting cells within nasal-associated lymphoid tissues, a response that was further augmented upon TCI two months later. Thus, bandaid immunization induced durable and boostable immunity. The simplicity and non-invasive nature of TCI with chimV4+dmLT supports its utility as a highly effective additional immunization strategy for NTHI-induced OM.


Subject(s)
Adhesins, Bacterial/immunology , Haemophilus Infections , Otitis Media , Adhesins, Bacterial/administration & dosage , Administration, Cutaneous , Animals , Antibodies, Bacterial , B-Lymphocytes/immunology , Chinchilla , Female , Haemophilus Infections/prevention & control , Haemophilus influenzae/immunology , Immunization/methods , Male , Otitis Media/prevention & control
13.
Int J Pediatr Otorhinolaryngol ; 130 Suppl 1: 109839, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31948716

ABSTRACT

OBJECTIVE: To review and highlight significant advances made towards vaccine development and understanding of the immunology of otitis media (OM) since the 19th International Symposium on Recent Advances in Otitis Media (ISOM) in 2015, as well as identify future research directions and knowledge gaps. DATA SOURCES: PubMed database, National Library of Medicine. REVIEW METHODS: Key topics were assigned to each panel member for detailed review. Draft reviews were collated, circulated, and thoroughly discussed when the panel met at the 20th ISOM in June 2019. The final manuscript was prepared with input from all panel members. CONCLUSIONS: Since 2015 there have been a number of studies assessing the impact of licensed pneumococcal vaccines on OM. While these studies have confirmed that these vaccines are effective in preventing carriage and/or disease caused by vaccine serotypes, OM caused by non-vaccine serotype pneumococci and other otopathogens remains a significant health care burden globally. Development of multi-species vaccines is challenging but essential to reducing the global burden of OM. Influenza vaccination has been shown to prevent acute OM, and with novel vaccines against nontypeable Haemophilus influenzae (NTHi), Moraxella catarrhalis and Respiratory Syncytial Virus (RSV) in clinical trials, the potential to significantly prevent OM is within reach. Research into alternative vaccine delivery strategies has demonstrated the power of maternal and mucosal vaccination for OM prevention. Future OM vaccine trials must include molecular diagnostics of middle ear effusion, for detection of viruses and bacteria that are persisting in biofilms and to enable accurate assessment of vaccine impact on OM etiology. Understanding population differences in natural and vaccine-induced immune responses to otopathogens is also important for development of the most effective OM vaccines. Improved understanding of the interaction between otopathogens will also advance development of effective therapies and encourage the assessment of the indirect benefits of vaccination. IMPLICATIONS FOR PRACTICE: While NTHi and M. catarrhalis are the predominant otopathogens, funding opportunities to drive vaccine development for these species are limited due to a focus on prevention of childhood mortality rather than morbidity. Delivery of a comprehensive report on the high financial and social costs of OM, including the potential for OM vaccines to reduce antibiotic use and subsequent development of antimicrobial resistance (AMR), would likely assist in engaging stakeholders to recognize the value of prevention of OM and increase support for efforts on OM vaccine development. Vaccine trials with OM prevention as a clinical end-point are challenging, however a focus on developing assays that measure functional correlates of protection would facilitate OM vaccine development.


Subject(s)
Otitis Media/immunology , Otitis Media/prevention & control , Vaccines , Biofilms , Haemophilus Vaccines , Humans , Influenza Vaccines , Microbial Interactions , Moraxellaceae Infections/prevention & control , Otitis Media/microbiology , Otitis Media with Effusion/diagnostic imaging , Otitis Media with Effusion/microbiology , Pneumococcal Vaccines , Respiratory Syncytial Virus Vaccines , Serogroup , Vaccination/methods , Vaccines/administration & dosage , Vaccines/immunology
14.
Biofilm ; 2: 100039, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33447823

ABSTRACT

Biofilms contribute significantly to the chronicity and recurrence of bacterial diseases due to the fact that biofilm-resident bacteria are highly recalcitrant to killing by host immune effectors and antibiotics. Thus, antibody-mediated release of bacteria from biofilm residence into the surrounding milieu supports a powerful strategy to resolve otherwise difficult-to-treat biofilm-associated diseases. In our prior work, we revealed that antibodies directed against two unique determinants of nontypeable Haemophilus influenzae (NTHI) [e.g. the Type IV pilus (T4P) or a bacterial DNABII DNA-binding protein, a species-independent target that provides structural integrity to bacterial biofilms] release biofilm-resident bacteria via discrete mechanisms. Herein, we now show that the phenotype of the resultant newly released (or NRel) NTHI is dependent upon the specific mechanism of release. We used flow cytometry, proteomic profiles, and targeted transcriptomics to demonstrate that the two NRel populations were significantly different not only from planktonically grown NTHI, but importantly, from each other despite genetic identity. Moreover, each NRel population had a distinct, significantly increased susceptibility to killing by either a sulfonamide or ß-lactam antibiotic compared to planktonic NTHI, an observation consistent with their individual proteomes and further supported by relative differences in targeted gene expression. The distinct phenotypes of NTHI released from biofilms by antibodies directed against specific epitopes of T4P or DNABII binding proteins provide new opportunities to develop targeted therapeutic strategies for biofilm eradication and disease resolution.

15.
Proc Natl Acad Sci U S A ; 116(50): 25068-25077, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31767757

ABSTRACT

Extracellular DNA (eDNA) is a critical component of the extracellular matrix of bacterial biofilms that protects the resident bacteria from environmental hazards, which includes imparting significantly greater resistance to antibiotics and host immune effectors. eDNA is organized into a lattice-like structure, stabilized by the DNABII family of proteins, known to have high affinity and specificity for Holliday junctions (HJs). Accordingly, we demonstrated that the branched eDNA structures present within the biofilms formed by NTHI in the middle ear of the chinchilla in an experimental otitis media model, and in sputum samples recovered from cystic fibrosis patients that contain multiple mixed bacterial species, possess an HJ-like configuration. Next, we showed that the prototypic Escherichia coli HJ-specific DNA-binding protein RuvA could be functionally exchanged for DNABII proteins in the stabilization of biofilms formed by 3 diverse human pathogens, uropathogenic E. coli, nontypeable Haemophilus influenzae, and Staphylococcus epidermidis Importantly, while replacement of DNABII proteins within the NTHI biofilm matrix with RuvA was shown to retain similar mechanical properties when compared to the control NTHI biofilm structure, we also demonstrated that biofilm eDNA matrices stabilized by RuvA could be subsequently undermined upon addition of the HJ resolvase complex, RuvABC, which resulted in significant biofilm disruption. Collectively, our data suggested that nature has recapitulated a functional equivalent of the HJ recombination intermediate to maintain the structural integrity of bacterial biofilms.


Subject(s)
Biofilms , DNA, Cruciform , Extracellular Matrix , Holliday Junction Resolvases , Recombination, Genetic , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Chinchilla , DNA Helicases , DNA, Cruciform/chemistry , DNA, Cruciform/metabolism , DNA-Binding Proteins , Disease Models, Animal , Escherichia coli Proteins , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Holliday Junction Resolvases/chemistry , Holliday Junction Resolvases/metabolism , Otitis Media
16.
Infect Immun ; 87(8)2019 08.
Article in English | MEDLINE | ID: mdl-31109946

ABSTRACT

PE-PilA is a fusion protein composed of immunologically relevant parts of protein E (PE) and the majority subunit of the type IV pilus (PilA), two major antigens of nontypeable Haemophilus influenzae (NTHi). Here we report on the preclinical evaluation of PE-PilA as a vaccine antigen. The immunogenic potential of the PE and PilA within the fusion was compared with that of isolated PE and PilA antigens. When injected intramuscularly into mice, the immunogenicity of PE within the fusion was equivalent to that of isolated PE, except when it was formulated with alum. In contrast, in our murine models PilA was consistently found to be more immunogenic as a subentity of the PE-PilA fusion protein than when it was injected as an isolated antigen. Following immunization with PE-PilA, anti-PE antibodies demonstrated the same capacity to inhibit the binding of PE to vitronectin as those induced after PE immunization. Likewise, PE-PilA-induced anti-PilA antibodies inhibited the formation of NTHi biofilms and disrupted established biofilms in vitro These experiments support the immunogenic equivalence between fused PE-PilA and isolated PE and PilA. Further, the potential of PE-PilA immunization against NTHi-induced disease was evaluated. After intranasal NTHi challenge, colonization of the murine nasopharynx significantly dropped in animals formerly immunized with PE-PilA, and in chinchillas, signs of otitis media were significantly reduced in animals that had received anti-PE-PilA antibodies. Taken together, our data support the use of PE-PilA as an NTHi vaccine antigen.


Subject(s)
Bacterial Proteins/immunology , Fimbriae Proteins/immunology , Haemophilus Vaccines/immunology , Haemophilus influenzae/immunology , Animals , Bacterial Adhesion , Biofilms , Chinchilla , Female , Immunization , Mice , Mice, Inbred BALB C , Nasopharynx/microbiology , Otitis Media/prevention & control , Vaccines, Synthetic/immunology , Vitronectin/metabolism
17.
J Pediatr Infect Dis ; 14(2): 69-77, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30853830

ABSTRACT

Otitis media (OM) is one of the most common diseases of childhood, and nontypeable Haemophilus influenzae (NTHI) is the predominant causative agent of chronic and recurrent OM, as well as OM for which treatment has failed. Moreover, NTHI is now as important a causative agent of acute OM as the pneumococcus. NTHI colonizes the human nasopharynx asymptomatically. However, upon perturbation of the innate and physical defenses of the airway by upper respiratory tract viral infection, NTHI can replicate, ascend the Eustachian tube, gain access to the normally sterile middle ear space, and cause disease. Bacterial biofilms within the middle ear, including those formed by NTHI, contribute to the chronic and recurrent nature of this disease. These multicomponent structures are highly resistant to clearance by host defenses and elimination by traditional antimicrobial therapies. Herein, we review several strategies utilized by NTHI in order to persist within the human host and interventions currently under investigation to prevent and/or resolve NTHI-induced diseases of the middle ear and uppermost airway.

18.
mBio ; 9(6)2018 12 11.
Article in English | MEDLINE | ID: mdl-30538189

ABSTRACT

Otitis media (OM) is often polymicrobial, with nontypeable Haemophilus influenzae (NTHI) and Moraxella catarrhalis (Mcat) frequently cocultured from clinical specimens. Bacterial biofilms in the middle ear contribute to the chronicity and recurrence of OM; therefore, strategies to disrupt biofilms are needed. We have focused our vaccine development efforts on the majority subunit of NTHI type IV pili, PilA. Antibodies against a recombinant, soluble form of PilA (rsPilA) both disrupt and prevent the formation of NTHI biofilms in vitro. Moreover, immunization with rsPilA prevents and resolves NTHI-induced experimental OM. Here, we show that antibodies against rsPilA also prevent and disrupt polymicrobial biofilms. Dual-species biofilms formed by NTHI and Mcat at temperatures that mimic the human nasopharynx (34°C) or middle ear (37°C) were exposed to antiserum against either rsPilA or the OMP P5 adhesin of NTHI. NTHI+Mcat biofilm formation was significantly inhibited by antiserum directed against both adhesin proteins at either temperature. However, only anti-rsPilA disrupted NTHI+Mcat preestablished biofilms at either temperature and actively dispersed both NTHI and Mcat via interspecies quorum signaling. Newly released NTHI and Mcat were significantly more susceptible to killing by antibiotics. Taken together, these results revealed new opportunities for treatment of biofilm-associated diseases via a strategy that combines vaccine-induced antibody-mediated biofilm dispersal with traditional antibiotics, at a significantly reduced dosage to exploit the newly released, antibiotic-sensitive phenotype. Combined, our data strongly support the utility of rsPilA both as a preventative and as a therapeutic vaccine antigen for polymicrobial OM due to NTHI and Mcat.IMPORTANCE Middle ear infections (or otitis media [OM]) are highly prevalent among children worldwide and present a tremendous socioeconomic challenge for health care systems. More importantly, this disease diminishes the quality of life of young children. OM is often chronic and recurrent, due to the presence of highly antibiotic-resistant communities of bacteria (called biofilms) that persist within the middle ear space. To combat these recalcitrant infections, new and powerful biofilm-directed approaches are needed. Here, we describe the ability to disrupt a biofilm formed by the two most common bacteria that cause chronic and recurrent OM in children, via an approach that combines the power of vaccines with that of traditional antibiotics. An outcome of this strategy is that antibiotics can more easily kill the bacteria that our vaccine-induced antibodies have released from the biofilm. We believe that this approach holds great promise for both the prevention and treatment of OM.


Subject(s)
Antibodies, Bacterial/immunology , Biofilms/drug effects , Biofilms/growth & development , Fimbriae Proteins/immunology , Fimbriae, Bacterial/immunology , Moraxella catarrhalis/drug effects , Moraxella catarrhalis/growth & development , Haemophilus influenzae/immunology , Humans
19.
Trends Microbiol ; 26(8): 727-728, 2018 08.
Article in English | MEDLINE | ID: mdl-29793827

ABSTRACT

In this infographic the diseases caused by nontypeable Haemophilus influenzae (NTHi), including otitis media, are discussed. Encapsulated type b Haemophilus influenzae (Hib) was responsible for most of the invasive disease (meningitis) prior to the use of Hib vaccines. As Hib vaccines have no effect on infections due to nontypeable H. influenzae (NTHi), in areas where Hib vaccines are used, nontypeable strains are now the most common cause of invasive disease. Moreover, NTHi contributes to the ∼21000 otitis media (OM)-associated deaths per year. Due to this collective global morbidity and mortality, concerted vaccine development is underway. In addition to preventing disease, an effective vaccine will likely help to mitigate the global crisis of antibiotic resistance. Since 1973, ampicillin resistance due to NTHi's production of ß-lactamase has been recognized; however, a significant concern is the more recent emergence and spread of ß-lactamase-negative-ampicillin-resistant (BLNAR) strains in many regions of the world. As such, H. influenzae is one of 12 bacterial pathogens that are considered priority pathogens by the World Health Organization.


Subject(s)
Haemophilus Infections/pathology , Haemophilus influenzae/classification , Haemophilus influenzae/pathogenicity , Otitis Media/pathology , Vaccines, Conjugate/immunology , Ampicillin Resistance/genetics , Haemophilus Infections/immunology , Haemophilus Infections/microbiology , Haemophilus influenzae/genetics , Humans , Lipopolysaccharides/metabolism , NAD/metabolism , Otitis Media/microbiology , Protoporphyrins/metabolism
20.
Proc Natl Acad Sci U S A ; 114(32): E6632-E6641, 2017 08 08.
Article in English | MEDLINE | ID: mdl-28696280

ABSTRACT

Biofilms formed by nontypeable Haemophilus influenzae (NTHI) are central to the chronicity, recurrence, and resistance to treatment of multiple human respiratory tract diseases including otitis media, chronic rhinosinusitis, and exacerbations of both cystic fibrosis and chronic obstructive pulmonary disease. Extracellular DNA (eDNA) and associated DNABII proteins are essential to the overall architecture and structural integrity of biofilms formed by NTHI and all other bacterial pathogens tested to date. Although cell lysis and outer-membrane vesicle extrusion are possible means by which these canonically intracellular components might be released into the extracellular environment for incorporation into the biofilm matrix, we hypothesized that NTHI additionally used a mechanism of active DNA release. Herein, we describe a mechanism whereby DNA and associated DNABII proteins transit from the bacterial cytoplasm to the periplasm via an inner-membrane pore complex (TraC and TraG) with homology to type IV secretion-like systems. These components exit the bacterial cell through the ComE pore through which the NTHI type IV pilus is expressed. The described mechanism is independent of explosive cell lysis or cell death, and the release of DNA is confined to a discrete subpolar location, which suggests a novel form of DNA release from viable NTHI. Identification of the mechanisms and determination of the kinetics by which critical biofilm matrix-stabilizing components are released will aid in the design of novel biofilm-targeted therapeutic and preventative strategies for diseases caused by NTHI and many other human pathogens known to integrate eDNA and DNABII proteins into their biofilm matrix.


Subject(s)
Bacterial Proteins/metabolism , DNA, Bacterial/metabolism , DNA-Binding Proteins/metabolism , Haemophilus influenzae/metabolism , Type IV Secretion Systems/metabolism , Bacterial Proteins/genetics , DNA, Bacterial/genetics , DNA-Binding Proteins/genetics , Fimbriae, Bacterial/genetics , Fimbriae, Bacterial/metabolism , Haemophilus influenzae/genetics , Type IV Secretion Systems/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...