Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 102(3): 102457, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36641994

ABSTRACT

A comparison between 3-wk-old female turkeys (B.U.T. 6) and broilers (Ross 308) was performed to study the effects of species, dietary P, Ca, and phytase levels on gut mucosal phosphatase activity, myo-inositol hexakisphosphate (InsP6) degradation along the digestive tract, digestibility of P, Ca, and amino acids, and concentrations of myo-inositol in the digesta and blood. The experimental diets were corn-soybean meal-based and identical for both species. Two dietary P and Ca concentrations (CaP-: 4.1 g P/kg, 5.5 g Ca/kg and CaP+: 9.0 g P/kg, 12.0 g Ca/kg) and 2 levels of phytase supplementation (0 and 1,500 FTU/kg) were used in a 2 × 2 factorial design and fed to the animals for 7 d in their third week of age. Each diet was randomly assigned to 6 broiler and 6 turkey pens, with 10 birds each. After slaughter, blood, digesta from the crop, gizzard, duodenum, lower ileum, and mucosa from the jejunum were collected. When fed CaP- without phytase supplementation, there were no differences between species in gut mucosal phosphatase activity, prececal InsP6 disappearance, and P and Ca digestibility, indicating a similar intrinsic capacity for phytate degradation in both species. When fed CaP+ without phytase supplementation, turkeys showed higher prececal InsP6 disappearance than broilers. Phytase supplementation increased prececal InsP6 disappearance and digestibility of P and Ca in both species. However, the phytase-induced increase in prececal InsP6 disappearance was more pronounced in broilers than in turkeys, possibly due to more adequate conditions for phytase activity in the broiler crop. In broilers, phytase supplementation increased amino acid digestibility overall, whereas, in turkeys, it increased with CaP+ and decreased with CaP-. In addition, the relationship between myo-inositol concentration in the ileum and blood differed between species, indicating differences in myo-inositol metabolism. It was concluded that 3-week-old turkeys and broilers differ in nutrient digestibility and InsP degradation in some segments of the digestive tract but have similar endogenous InsP6 degradation when fed low P and Ca diets.


Subject(s)
6-Phytase , Phytic Acid , Animals , Female , Phytic Acid/metabolism , Phosphorus/metabolism , Dietary Supplements , Chickens/metabolism , 6-Phytase/metabolism , Turkeys/metabolism , Digestion , Diet/veterinary , Inositol/metabolism , Mucous Membrane , Animal Feed/analysis , Animal Nutritional Physiological Phenomena
2.
Poult Sci ; 102(4): 102476, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36716675

ABSTRACT

Female turkeys (B.U.T. 6) and broilers (Ross 308) were compared at 6 wk of age to evaluate the effects of species, dietary P, Ca, and phytase levels on myo-inositol hexakisphosphate (InsP6) degradation along the digestive tract, gut mucosal phosphatase activity, P and Ca digestibility, and myo-inositol concentrations in the digesta and blood. The environmental conditions and experimental corn-soybean meal-based diets were the same for both species. Four diets with either combination of 2 levels of P and Ca (CaP-: 4.0 g P/kg, 5.4 g Ca/kg and CaP+: 6.0 g P/kg, 8.0 g Ca/kg) and 2 levels of phytase supplementation (0 and 1,500 FTU/kg) were fed to the animals for 7 d at their sixth wk of age. Each diet was randomly assigned to 6 pens per species, with 10 birds each. After slaughter, blood, digesta from the crop, gizzard, duodenum, lower ileum, and jejunal mucosa were collected. Endogenous mucosal phosphatase activity in the jejunum was higher in turkeys than in broilers. Prececal InsP6 disappearance was also higher in turkeys than in broilers when phytase was not supplemented. Phytase supplementation led to a higher prececal InsP6 disappearance in broilers than in turkeys, likely due to different crop conditions such as moisture content. However, prececal P digestibility was higher in turkeys than broilers. Different relationships between myo-inositol concentration in the ileum digesta and blood were found, depending on the species. A comparison of the results with those obtained in 3-wk-old birds of a companion study showed that in diets with low Ca and P levels, prececal InsP6 disappearance increased with age in turkeys, but not in broilers. This coincided with changes in the conditions of the digestive tract, such as the water content in the crop, gizzard pH, and mucosal phosphatase activity. In conclusion, occurrence of differences in phytate degradation between turkeys and broilers, fed the same feed, depended on age and can be explained by different physiological development of the digestive tract.


Subject(s)
6-Phytase , Phytic Acid , Female , Animals , Phytic Acid/metabolism , Phosphorus/metabolism , Chickens/physiology , Turkeys/metabolism , 6-Phytase/metabolism , Digestion , Diet/veterinary , Dietary Supplements , Minerals/metabolism , Inositol/metabolism , Mucous Membrane , Animal Feed/analysis , Animal Nutritional Physiological Phenomena
3.
Animals (Basel) ; 10(8)2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32796582

ABSTRACT

Responses of broiler chickens to dietary glycine equivalent (Glyequi) are affected by dietary cysteine and choline. Hence, this study investigated interactive effects among dietary Glyequi, cysteine, and choline on the growth of broiler chickens. Male Ross 308 broiler chickens were maintained in 105 metabolism units (10 birds/unit) from days 7 to 22. Excreta were collected in 12-h intervals from days 18 to 21. Blood was sampled on day 22 (1 bird/unit). Five levels each of Glyequi (9-21 g/kg), cysteine (2-5 g/kg), and choline (0.5-1.7 g/kg) were tested under 15 diets in 7 replicates each following a fractional central composite design. Another diet was provided to five metabolism units (15 birds/unit) to measure prececal amino acid digestibility. Data were evaluated using neural networks. The gain:feed ratio (G:F) increased with digestible Glyequi intake. Differences between low and high digestible cysteine intake were low. Effects of choline intake on G:F were low. Nitrogen-utilization efficiency (NUE) was high (≥77%), with low variation among treatments. Plasma metabolites varied among treatments and indicated that metabolism of Glyequi, cysteine, and choline was influenced. These findings showed that interactive effects of dietary Glyequi, cysteine, and choline on growth were small, possibly because NUE was barely influenced.

SELECTION OF CITATIONS
SEARCH DETAIL
...