Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 10(1)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36671642

ABSTRACT

Femoral fractures and severe bleeding frequently occur in old patients showing a delayed healing. As there are no studies investigating the combined effect of high age and severe blood loss on fracture healing, this was examined radiographically and biomechanically in this study. Therefore, young and old male mice were randomly assigned to three operation groups. In the fracture group (Fx), external fixator and osteotomy were applied to the femur. The combined trauma group (THFx) additionally received a pressure-controlled hemorrhage. Sham animals were only implanted with arterial catheter and external fixator. Sacrifice was performed after three weeks and bone healing was evaluated radiologically via µCT, as well as biomechanically using a three-point bending test. A decreased share of callus/total bone volume was observed in old mice with blood loss compared to old Fx. Hemorrhagic shock also reduced the trabecular number in old mice compared to Fx and young THFx. Moreover, a lower elastic limit in old Sham mice without fracture was revealed. Fracture combined with a high loss of blood further reduced the elastic limit in old mice compared to isolated Fx in old animals. In conclusion, this study showed that severe blood loss has a higher negative effect in old mice compared to young ones.

2.
J Clin Med ; 11(15)2022 Aug 07.
Article in English | MEDLINE | ID: mdl-35956214

ABSTRACT

Polytrauma and concomitant hemorrhagic shock can lead to intestinal damage and subsequent multiple organ dysfunction syndrome. The intestinal fatty acid-binding protein (I-FABP) is expressed in the intestine and appears quickly in the circulation after intestinal epithelial cell damage. This porcine animal study investigates the I-FABP dynamics in plasma and urine after polytrauma. Furthermore, it evaluates to what extent I-FABP can also act as a marker of intestinal damage in a porcine polytrauma model. Eight pigs (Sus scrofa) were subjected to polytrauma which consisted of lung contusion, tibial fracture, liver laceration, and hemorrhagic shock followed by blood and fluid resuscitation and fracture fixation with an external fixator. Eight sham animals were identically instrumented but not injured. Afterwards, intensive care treatment including mechanical ventilation for 72 h followed. I-FABP levels in blood and urine were determined by ELISA. In addition, immunohistological staining for I-FABP, active caspase-3 and myeloperoxidase were performed after 72 h. Plasma and urine I-FABP levels were significantly increased shortly after trauma. I-FABP expression in intestinal tissue showed significantly lower expression in polytraumatized animals vs. sham. Caspase-3 and myeloperoxidase expression in the immunohistological examination were significantly higher in the jejunum and ileum of polytraumatized animals compared to sham animals. This study confirms a loss of intestinal barrier after polytrauma which is indicated by increased I-FABP levels in plasma and urine as well as decreased I-FABP levels in immunohistological staining of the intestine.

3.
Cells ; 11(15)2022 07 27.
Article in English | MEDLINE | ID: mdl-35954154

ABSTRACT

The incidence of cholangiocellular carcinoma (CCA) is rising worldwide. As there are no specific early symptoms or specific markers of CCA, it is often diagnosed in later inoperable stages. Accumulating evidence underlines the importance of radiation therapy in the induction of antitumor immunity. The surface protein composition on extracellular vesicles (EVs) relates to originating cells and thus may play a role in vesicle function. We assessed immune profiles of EVs and their immune origin in patients with inoperable CCA prior and after selective internal radiotherapy (SIRT). A total of 47 CCA patients receiving SIRT and 12 healthy volunteers (HV) were included. Blood was withdrawn before therapy (pre T) and after T. EVs were purified from plasma by cluster of differentiation (CD)9-, CD63-, and CD81-immunobead isolation. To detect differently abundant surface markers, dynamic range and EVs input quality were assessed. A total of 37 EVs surface markers were measured by flow cytometry and correlated either with the administered activity dose (MBq) or with the interval until death (month). EVs phenotyping identified lymphocytes, B cells, NK cells, platelets, endothelial cells, leukocyte activation, B cell activation, T and B cell adhesion markers, stem/progenitor cells, and antigen-presenting cells (APC) as EVs-parenteral cells. CD4 and CD8 significantly declined, while other markers significantly increased in CCA patients pre T vs. HV. Platelets-deriving EVs significantly decreased, normalizing to levels of HV but still significantly increasing vs. HV post SIRT. B cells-deriving EVs significantly increased pre T vs. HV, positively correlating with administered activity dose. MHCII and CD40 EVs significantly increased pre SIRT and negatively correlated with administered activity dose, while EVs from antigen presenting cells and CD49e pre SIRT positively correlated with survival time after therapy. Increased levels of CD24 and CD44 in cancer pre T were significantly decreased post T. Among the heterogeneity of EVs that was demonstrated, in particular, B cells-deriving, MHCII, and CD40 positive or APC-deriving EVs need to be further studied for their diagnostic or prognostic relevance in clinical scenarios.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Extracellular Vesicles , Humans , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic , Biomarkers/metabolism , Cholangiocarcinoma/pathology , Endothelial Cells , Extracellular Vesicles/metabolism , Radiotherapy
4.
Front Immunol ; 13: 866925, 2022.
Article in English | MEDLINE | ID: mdl-35663960

ABSTRACT

Background: Trauma is the third leading cause of mortality worldwide. Upon admission, up to 50% of traumatized patients are acutely intoxicated with alcohol, which might lead to aberrant immune responses. An excessive and uncontrolled inflammatory response to injury is associated with damage to trauma-distant organs. We hypothesize that, along with inflammation-induced apoptosis, the activation of the Wnt/ß-catenin signaling pathway would cause breakdown of the lung barrier and the development of lung injury after trauma. It remains unclear whether ethanol intoxication (EI) prior to trauma and hemorrhagic shock will attenuate inflammation and organ injury. Methods: In this study, 14 male C57BL/6J mice were randomly assigned to two groups and exposed either to EtOH or to NaCl as a control by an oral gavage before receiving a femur fracture (Fx) and hemorrhagic shock, followed by resuscitation (THFx). Fourteen sham animals received either EtOH or NaCl and underwent surgical procedures without THFx induction. After 24 h, oil red O staining of fatty vacuoles in the liver was performed. Histological lung injury score (LIS) was assessed to analyze the trauma-induced RLI. Gene expression of Cxcl1, Il-1ß, Muc5ac, Tnf, and Tnfrsf10b as well as CXCL1, IL-1ß, and TNF protein levels in the lung tissue and bronchoalveolar lavage fluid were determined by RT-qPCR, ELISA, and immunohistological analyses. Infiltrating polymorphonuclear leukocytes (PMNLs) were examined via immunostaining. Apoptosis was detected by activated caspase-3 expression in the lung tissue. To confirm active Wnt signaling after trauma, gene expression of Wnt3a and its inhibitor sclerostin (Sost) was determined. Protein expression of A20 and RIPK4 as possible modulators of the Wnt signaling pathway was analyzed via immunofluorescence. Results: Significant fatty changes in the liver confirmed the acute EI. Histopathology and decreased Muc5ac expression revealed an increased lung barrier breakdown and concomitant lung injury after THFx versus sham. EI prior trauma decreased lung injury. THFx increased not only the gene expression of pro-inflammatory markers but also the pulmonary infiltration with PMNL and apoptosis versus sham, while EI prior to THFx reduced those changes significantly. EI increased the THFx-reduced gene expression of Sost and reduced the THFx-induced expression of Wnt3a. While A20, RIPK4, and membranous ß-catenin were significantly reduced after trauma, they were enhanced upon EI. Conclusion: These findings suggest that acute EI alleviates the uncontrolled inflammatory response and lung barrier breakdown after trauma by suppressing the Wnt/ß-catenin signaling pathway.


Subject(s)
Alcoholic Intoxication , Lung Injury , Shock, Hemorrhagic , Animals , Disease Models, Animal , Ethanol/toxicity , Humans , Inflammation/pathology , Lung/pathology , Lung Injury/etiology , Lung Injury/pathology , Male , Mice , Mice, Inbred C57BL , Shock, Hemorrhagic/complications , Shock, Hemorrhagic/pathology , Sodium Chloride , Wnt Signaling Pathway
5.
Eur J Trauma Emerg Surg ; 48(6): 4719-4726, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35596754

ABSTRACT

BACKGROUND: Polytrauma and respiratory tract damage after thoracic trauma cause about 25% of mortality among severely injured patients. Thoracic trauma can lead to the development of severe lung complications such as acute respiratory distress syndrome, and is, therefore, of great interest for monitoring in intensive care units (ICU). In recent years, club cell protein (CC)16 with its antioxidant properties has proven to be a potential outcome-related marker. In this study, we evaluated whether CC16 constitutes as a marker of lung damage in a porcine polytrauma model. METHODS: In a 72 h ICU polytrauma pig model (thoracic trauma, tibial fracture, hemorrhagic shock, liver laceration), blood plasma samples (0, 3, 9, 24, 48, 72 h), BAL samples (72 h) and lung tissue (72 h) were collected. The trauma group (PT) was compared to a sham group. CC16 as a possible biomarker for lung injury in this model, and IL-8 concentrations as known indicator for ongoing inflammation during trauma were determined by ELISA. Histological analysis of ZO-1 and determination of total protein content were used to show barrier disruption and edema formation in lung tissue from the trauma group. RESULTS: Systemic CC16 levels were significantly increased early after polytrauma compared vs. sham. After 72 h, CC16 concentration was significantly increased in lung tissue as well as in BAL in PT vs. sham. Similarly, IL-8 and total protein content in BAL were significantly increased in PT vs. sham. Evaluation of ZO-1 staining showed significantly lower signal intensity for polytrauma. CONCLUSION: The data confirm for the first time in a larger animal polytrauma model that lung damage was indicated by systemic and/or local CC16 response. Thus, early plasma and late BAL CC16 levels might be suitable to be used as markers of lung injury in this polytrauma model.


Subject(s)
Lung Injury , Multiple Trauma , Shock, Hemorrhagic , Thoracic Injuries , Animals , Swine , Interleukin-8 , Multiple Trauma/complications , Biomarkers , Disease Models, Animal , Thoracic Injuries/complications
6.
Front Immunol ; 12: 652488, 2021.
Article in English | MEDLINE | ID: mdl-34084163

ABSTRACT

Background: Excessive alcohol intake is associated with adverse immune response-related effects, however, acute and chronic abuse differently modulate monocyte activation. In this study, we have evaluated the phenotypic and functional changes of monocytes in acutely intoxicated healthy volunteers (HV). Methods: Twenty-two HV consumed individually adjusted amounts of alcoholic beverages until reaching a blood alcohol level of 1‰ after 4h (T4). Peripheral blood was withdrawn before and 2h (T2), 4h (T4), 6h (T6), 24h (T24), and 48h (T48) after starting the experiment and stained for CD14, CD16 and TLR4. CD14brightCD16-, CD14brightCD16+ and CD14dimCD16+ monocyte subsets and their TLR4 expression were analyzed by flow cytometry. Inflammasome activation via caspase-1 in CD14+ monocytes was measured upon an ex vivo in vitro LPS stimulation. Systemic IL-1ß and adhesion capacity of isolated CD14+ monocytes upon LPS stimulation were evaluated. Results: The percentage of CD14+ monocyte did not change following alcohol intoxication, whereas CD14brightCD16- monocyte subset significantly increased at T2 and T24, CD14brightCD16+ at T2, T4 and T6 and CD14dimCD16+ at T4 and T6. The relative fraction of TLR4 expressing CD14+ monocytes as well as the density of TLR4 surface presentation increased at T2 and decreased at T48 significantly. TLR4+CD14+ monocytes were significantly enhanced in all subsets at T2. TLR4 expression significantly decreased in CD14brightCD16- at T48, in CD14brightCD16+ at T24 and T48, increased in CD14dimCD16+ at T2. IL-1ß release upon LPS stimulation decreased at T48, correlating with TLR4 receptor expression. Alcohol downregulated inflammasome activation following ex vivo in vitro stimulation with LPS between T2 and T48 vs. T0. The adhesion capacity of CD14+ monocytes decreased from T2 with significance at T4, T6 and T48. Following LPS administration, a significant reduction of adhesion was observed at T4 and T6. Conclusions: Alcohol intoxication immediately redistributes monocyte subsets toward the pro-inflammatory phenotype with their subsequent differentiation into the anti-inflammatory phenotype. This is paralleled by a significant functional depression, suggesting an alcohol-induced time-dependent hyporesponsiveness of monocytes to pathogenic triggers.


Subject(s)
Alcoholic Intoxication/immunology , Alcoholic Intoxication/metabolism , Cell Plasticity , Monocytes/immunology , Monocytes/metabolism , Adolescent , Adult , Biomarkers , Cell Plasticity/immunology , Healthy Volunteers , Humans , Immunophenotyping , Interleukin-1beta/metabolism , Middle Aged , Time Factors , Toll-Like Receptor 4/metabolism , Young Adult
7.
Dis Markers ; 2021: 6622701, 2021.
Article in English | MEDLINE | ID: mdl-33791043

ABSTRACT

BACKGROUND: In several preclinical and in vitro models of acute inflammation, alcohol (ethanol, EtOH) has been described as an immunomodulatory agent. Similarly, in different pathologies, clinical observations have confirmed either pro- or anti-inflammatory effects of EtOH. The liver plays an important role in immunity and alcohol metabolism; therefore, we analysed dose- and time-dependent effects of EtOH on the inflammatory response of human liver cells in an in vitro model of acute inflammation. METHODS: HepG2 cells were stimulated with IL-1ß and subsequently exposed to EtOH in a low or high dose (85 mM, LoD or 170 mM, HiD) for 1 h (acute exposure) or 72 h (prolonged exposure). IL-6 and TNF-α release was determined by ELISA. Cell viability, adhesion of isolated neutrophils to HepG2 monolayers, their ICAM-1 expression, and the activation of stress-induced protein kinase/c-Jun N-terminal kinase (SAPK/JNK) or signal transducer and activator of transcription 3 (STAT3) were analysed. RESULTS: In this experimental design, EtOH did not markedly change the cell viability. Acute and prolonged exposure to EtOH significantly reduced dose-independent IL-1ß-induced IL-6 and TNF-α release, as well as adhesion capacity to pretreated HepG2 cells. Acute exposure to EtOH significantly decreased the percentage of ICAM-1-expressing cells. IL-1ß stimulation notably increased the activation of SAPK/JNK. However, low-dose EtOH exposure reduced this activation considerably, in contradiction to high-dose EtOH exposure. Acute exposure to LoD EtOH significantly diminished the IL-1ß-induced STAT3 activation, whereas an acute exposure of cells to either HiD EtOH or in a prolonged setting showed no effects on STAT3 activation. CONCLUSION: EtOH exerts anti-inflammatory potential in this in vitro model of hepatic inflammation. These effects are associated with the reduced activation of JNK/STAT3 by EtOH, particularly in the condition of acute exposure to low-dose EtOH.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Ethanol/pharmacology , MAP Kinase Kinase 4/metabolism , STAT3 Transcription Factor/metabolism , Cell Adhesion/drug effects , Cell Survival/drug effects , Down-Regulation , Hep G2 Cells , Humans , Intercellular Adhesion Molecule-1/metabolism , Interleukin-6/metabolism , Neutrophils/drug effects , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
8.
Int J Mol Sci ; 21(24)2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33321885

ABSTRACT

Ethanol misuse is frequently associated with a multitude of profound medical conditions, contributing to health-, individual- and social-related damage. A particularly dangerous threat from this classification is coined as alcoholic liver disease (ALD), a liver condition caused by prolonged alcohol overconsumption, involving several pathological stages induced by alcohol metabolic byproducts and sustained cellular intoxication. Molecular, pathological mechanisms of ALD principally root in the innate immunity system and are especially associated with enhanced functionality of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. NF-κB is an interesting and convoluted DNA transcription regulator, promoting both anti-inflammatory and pro-inflammatory gene expression. Thus, the abundancy of studies in recent years underlines the importance of NF-κB in inflammatory responses and the mechanistic stimulation of inner molecular motifs within the factor components. Hereby, in the following review, we would like to put emphasis on the correlation between the NF-κB inflammation signaling pathway and ALD progression. We will provide the reader with the current knowledge regarding the chronic and acute alcohol consumption patterns, the molecular mechanisms of ALD development, the involvement of the NF-κB pathway and its enzymatic regulators. Therefore, we review various experimental in vitro and in vivo studies regarding the research on ALD, including the recent active compound treatments and the genetic modification approach. Furthermore, our investigation covers a few human studies.


Subject(s)
Alcohol Drinking/metabolism , Ethanol/toxicity , Liver Diseases, Alcoholic/metabolism , Liver/metabolism , NF-kappa B/metabolism , Alcohol Drinking/adverse effects , Animals , Ethanol/pharmacokinetics , Humans , Liver/drug effects , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...