Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 286(2): 931-7, 1998 Aug.
Article in English | MEDLINE | ID: mdl-9694952

ABSTRACT

We investigated the effects of (+)-4-[(alpha R)-alpha-((2S, 5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N, N-diethylbenzamide (SNC 80), a nonpeptidic delta-opioid receptor-selective agonist, on rat leukocyte functions. Intracerebroventricular injection of SNC 80 (20 nmol) in Fischer 344N male rats did not affect splenic natural killer cell activity compared with intracerebroventricular saline-injected controls. SNC 80 also had no effect on concanavalin A-, anti-T cell receptor-, interleukin-2- and anti-T cell receptor + interleukin-2-induced splenic and thymic lymphocyte proliferation in most experiments. In some experiments, however, SNC 80 significantly (P < .01) caused a 41 to 93% increase of concanavalin A-, anti-T cell receptor-, interleukin-2- and anti-T cell receptor + interleukin-2-induced splenic lymphocyte proliferation compared to controls. Additionally, SNC 80 did not significantly affect splenic T cell or natural killer cell populations as measured by the expression of T cell receptoralphabeta, and T helper (CD4), T suppressor/cytotoxic (CD8) and natural killer cell surface markers. Finally, SNC 80 did not affect interferon-gamma- or lipopolysaccharide (LPS)-induced splenic nitric oxide, and LPS-induced tumor necrosis factor-alpha production by splenic macrophages. These results suggest that SNC 80 could be useful in the treatment of pain without suppressing immune function. However, the potential immunoenhancing properties of SNC 80 may be also valuable in immunocompromised individuals.


Subject(s)
Benzamides/pharmacology , Killer Cells, Natural/drug effects , Macrophages/drug effects , Piperazines/pharmacology , Receptors, Opioid, delta/agonists , T-Lymphocytes/drug effects , Animals , Benzamides/administration & dosage , Cell Division/drug effects , Culture Media , Flow Cytometry , Indicators and Reagents , Injections, Intraventricular , Killer Cells, Natural/metabolism , Macrophages/metabolism , Male , Nitrites/metabolism , Piperazines/administration & dosage , Rats , Rats, Inbred F344 , Spleen/cytology , Spleen/drug effects , Spleen/metabolism , T-Lymphocytes/metabolism , Thymus Gland/cytology , Thymus Gland/drug effects , Thymus Gland/metabolism
2.
Biotechnol Bioeng ; 47(4): 407-19, 1995 Aug 20.
Article in English | MEDLINE | ID: mdl-18623417

ABSTRACT

To investigate the mechanisms of cell protection provided by medium additives against animal cell injury in sparged bioreactors, we have analyzed the effect of various additives on the cell-to-bubble attachment process using CHO cells in suspension. Cell-to-bubble attachment was examined using three experimental techniques: (1) cell-bubble induction time analysis (cell-to-bubble attachment times); (2) forming thin liquid films and observing the movement and location of cells in the thin films; and (3) foam flotation experiments. The induction times we measured for the various additives are as follows: no additive (50 to 500 ms), polyvinyl pyrrolidone (PVP: 20 to 500 ms), polyethylene glycol (PEG: 200 to 1000 ms), 3% serum (500 to 1000 ms), polyvinyl alcohol (PVA: 2 to 10 s), Pluronic F68 (5 to 20 s), and Methocel (20 to 60 s). In the thin film formation experiments, cells in medium with either F68, PVA, or Methocel quickly flowed out of draining thin liquid films and entered the plateau border. When using media with no additive or with serum, the flow of cells out of the thin liquid film and film drainage were slower than for media containing Pluronic F68. PVA, or Methocel. With PVP and PEG, the thin film drainage was much slower and cells remained trapped in the film. For the foam flotation experiments, a separation factor (ratio of cell concentration in the foam catch to that in the bubble column) was determined for the various additives. In the order of increasing separation factors (i.e., increasing cell attachment to bubbles), the additives are as follows: Methocel, PVA, Pluronic F68, 3% serum, serum-free medium with no additives, PEG, and PVP. Based on the results of these three different cell-to-bubble attachment experiments, we have classified the cell-protecting additives into three groups: (1) Pluronic F68, PVA, and Methocel (reduced cell-to-bubble attachment); (2) PEG and PVP (high or increased cell-to-bubble attachment); and (3) FBS (reduced cell attachment butslower drainage films compared with F68, PVA, and Methocel with some cell entrapment in those films). These phenomena are discussed in relation to the interfacial properties of the media reported in a companion Study (this issue). (c) 1995 John Wiley & Sons Inc.

3.
Biotechnol Bioeng ; 47(4): 420-30, 1995 Aug 20.
Article in English | MEDLINE | ID: mdl-18623418

ABSTRACT

In an effort to identify key rheological properties that contribute to cell protection against shear damage, we have measured surface shear and dilatationai viscosities, dynamic surface tension, foaminess, and foam stability for media containing cell-protecting additives. In a companion article,(18) we found that cell-to-bubble attachment was decreased in media containing Methocel, Pluronic F68, or polyvinyl alcohol (PVA). In medium containing polyethylene glycol (PEG) or potyvinyl-pyrrolidone (PVP), attachment was increased. PEG, PVP, serum (FBS), and serum albumin (BSA) increased the surface viscosity of the air/medium surface (thus, producing a more rigid interface), whereas F68 and PVA lowered it greatly. Foaming experiments showed that Methocel, PEG, PVA, and F68 decreased the foam half-life while FBS, BSA, and PVP were foam stabilizers. Interestingly, the foam stability of CHO cell suspensions decreased significantly for cell concentrations higher than ca. 2 x 10(6) cells/mL. Nonviable CHO cells reduced foam stability further. Dynamic surface tension values of the media tested were found significantly differentfrom their static surface tension values. The interfacial properties measured and the results presented in the companion study suggest that the additives that lower dynamic surface tension the most (Methocel, F68, and PVA) correlate well with reduced cell-to-bubble attachment, and thus, cell protection. Reduced dynamic surface tension with these additives implies faster surfactant adsorption, mobile interfaces, lower surface viscosity, and foam destabilization. Because PEG and PVP resulted in increased cell-to-bubble attachment and had different interfacial properties, a different mechanism (compared with Methocel, PVP, and F68) is apparently responsible for their protective effect. Finally, cell protection offered by FBS and BSA is attributed to the foam stabilization properties provided by these additives. (c) 1995 John Wiley & Sons Inc.

SELECTION OF CITATIONS
SEARCH DETAIL
...