Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36850400

ABSTRACT

COVID-19 forced a number of changes in many areas of life, which resulted in an increase in human activity in cyberspace. Furthermore, the number of cyberattacks has increased. In such circumstances, detection, accurate prioritisation, and timely removal of critical vulnerabilities is of key importance for ensuring the security of various organisations. One of the most-commonly used vulnerability assessment standards is the Common Vulnerability Scoring System (CVSS), which allows for assessing the degree of vulnerability criticality on a scale from 0 to 10. Unfortunately, not all detected vulnerabilities have defined CVSS base scores, or if they do, they are not always expressed using the latest standard (CVSS 3.x). In this work, we propose using machine learning algorithms to convert the CVSS vector from Version 2.0 to 3.x. We discuss in detail the individual steps of the conversion procedure, starting from data acquisition using vulnerability databases and Natural Language Processing (NLP) algorithms, to the vector mapping process based on the optimisation of ML algorithm parameters, and finally, the application of machine learning to calculate the CVSS 3.x vector components. The calculated example results showed the effectiveness of the proposed method for the conversion of the CVSS 2.0 vector to the CVSS 3.x standard.


Subject(s)
COVID-19 , Humans , Algorithms , Databases, Factual , Machine Learning , Natural Language Processing
2.
Sensors (Basel) ; 19(15)2019 Jul 30.
Article in English | MEDLINE | ID: mdl-31366175

ABSTRACT

In this study, we presented the concept and implementation of a fully functional system for the recognition of bi-heterocyclic compounds. We have conducted research into the application of machine learning methods to correctly recognize compounds based on THz spectra, and we have described the process of selecting optimal parameters for the kernel support vector machine (KSVM) with an additional `unknown' class. The chemical compounds used in the study contain a target molecule, used in pharmacy to combat inflammatory states formed in living organisms. Ready-made medical products with similar properties are commonly referred to as non-steroidal anti-inflammatory drugs (NSAIDs) once authorised on the pharmaceutical market. It was crucial to clearly determine whether the tested sample is a chemical compound known to researchers or is a completely new structure which should be additionally tested using other spectrometric methods. Our approach allows us to achieve 100% accuracy of the classification of the tested chemical compounds in the time of several milliseconds counted for 30 samples of the test set. It fits perfectly into the concept of rapid recognition of bi-heterocyclic compounds without the need to analyse the percentage composition of compound components, assuming that the sample is classified in a known group. The method allows us to minimize testing costs and significant reduction of the time of analysis.


Subject(s)
Biosensing Techniques , Heterocyclic Compounds/isolation & purification , Terahertz Spectroscopy , Heterocyclic Compounds/chemistry , Machine Learning , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL
...