Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
J Neurosurg Case Lessons ; 3(5)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-36130566

ABSTRACT

BACKGROUND: Cladophialophora bantiana is a dematiaceous, saprophytic fungus and a rare but reported cause of intracranial abscesses due to its strong neurotropism. Although it predominantly affects immunocompetent individuals with environmental exposure, more recently, its significance as a highly lethal opportunistic infection in transplant recipients has been recognized. Successful treatment requires timely but often challenging diagnosis, followed by complete surgical excision. Next-generation sequencing of microbial cell-free DNA (cfDNA) from plasma is a novel diagnostic method with the potential to identify invasive fungal infections more rapidly and less invasively than conventional microbiological testing, including brain biopsy. OBSERVATIONS: The authors described the case of a recipient of a liver transplant who presented with seizures and was found to have innumerable ring-enhancing intracranial lesions. The Karius Test, a commercially available method of next-generation sequencing of cfDNA, was used to determine the causative organism. Samples from the patient's plasma identified C. bantiana 6 days before culture results of the surgical specimen, allowing optimization of the empirical antifungal regimen, which led to a reduction in the size of the abscesses. LESSONS: The authors' findings suggest that microbial cfDNA sequencing may be particularly impactful in improving the management of brain abscesses in which the differential diagnosis is wide because of immunosuppression.

2.
Microbiol Spectr ; 10(5): e0173622, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36069609

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are characterized by differences in transmissibility and response to therapeutics. Therefore, discriminating among them is vital for surveillance, infection prevention, and patient care. While whole-genome sequencing (WGS) is the "gold standard" for variant identification, molecular variant panels have become increasingly available. Most, however, are based on limited targets and have not undergone comprehensive evaluation. We assessed the diagnostic performance of the highly multiplexed Agena MassARRAY SARS-CoV-2 Variant Panel v3 to identify variants in a diverse set of 391 SARS-CoV-2 clinical RNA specimens collected across our health systems in New York City, USA and Bogotá, Colombia (September 2, 2020 to March 2, 2022). We demonstrated almost perfect levels of interrater agreement between this assay and WGS for 9 of 11 variant calls (κ ≥ 0.856) and 25 of 30 targets (κ ≥ 0.820) tested on the panel. The assay had a high diagnostic sensitivity (≥93.67%) for contemporary variants (e.g., Iota, Alpha, Delta, and Omicron [BA.1 sublineage]) and a high diagnostic specificity for all 11 variants (≥96.15%) and all 30 targets (≥94.34%) tested. Moreover, we highlighted distinct target patterns that could be utilized to identify variants not yet defined on the panel, including the Omicron BA.2 and other sublineages. These findings exemplified the power of highly multiplexed diagnostic panels to accurately call variants and the potential for target result signatures to elucidate new ones. IMPORTANCE The continued circulation of SARS-CoV-2 amid limited surveillance efforts and inconsistent vaccination of populations has resulted in the emergence of variants that uniquely impact public health systems. Thus, in conjunction with functional and clinical studies, continuous detection and identification are quintessential to informing diagnostic and public health measures. Furthermore, until WGS becomes more accessible in the clinical microbiology laboratory, the ideal assay for identifying variants must be robust, provide high resolution, and be adaptable to the evolving nature of viruses like SARS-CoV-2. Here, we highlighted the diagnostic capabilities of a highly multiplexed commercial assay to identify diverse SARS-CoV-2 lineages that circulated from September 2, 2020 to March 2, 2022 among patients seeking care in our health systems. This assay demonstrated variant-specific signatures of nucleotide/amino acid polymorphisms and underscored its utility for the detection of contemporary and emerging SARS-CoV-2 variants of concern.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Mass Spectrometry , RNA , Nucleotides , Amino Acids
3.
medRxiv ; 2022 May 29.
Article in English | MEDLINE | ID: mdl-35665019

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are characterized by differences in transmissibility and response to therapeutics. Therefore, discriminating among them is vital for surveillance, infection prevention, and patient care. While whole viral genome sequencing (WGS) is the "gold standard" for variant identification, molecular variant panels have become increasingly available. Most, however, are based on limited targets and have not undergone comprehensive evaluation. We assessed the diagnostic performance of the highly multiplexed Agena MassARRAY ® SARS-CoV-2 Variant Panel v3 to identify variants in a diverse set of 391 SARS-CoV-2 clinical RNA specimens collected across our health systems in New York City, USA as well as in Bogotá, Colombia (September 2, 2020 - March 2, 2022). We demonstrate almost perfect levels of interrater agreement between this assay and WGS for 9 of 11 variant calls (κ ≥ 0.856) and 25 of 30 targets (κ ≥ 0.820) tested on the panel. The assay had a high diagnostic sensitivity (≥93.67%) for contemporary variants (e.g., Iota, Alpha, Delta, Omicron [BA.1 sublineage]) and a high diagnostic specificity for all 11 variants (≥96.15%) and all 30 targets (≥94.34%) tested. Moreover, we highlight distinct target patterns that can be utilized to identify variants not yet defined on the panel including the Omicron BA.2 and other sublineages. These findings exemplify the power of highly multiplexed diagnostic panels to accurately call variants and the potential for target result signatures to elucidate new ones. Importance: The continued circulation of SARS-CoV-2 amidst limited surveillance efforts and inconsistent vaccination of populations has resulted in emergence of variants that uniquely impact public health systems. Thus, in conjunction with functional and clinical studies, continuous detection and identification are quintessential to inform diagnostic and public health measures. Furthermore, until WGS becomes more accessible in the clinical microbiology laboratory, the ideal assay for identifying variants must be robust, provide high resolution, and be adaptable to the evolving nature of viruses like SARS-CoV-2. Here, we highlight the diagnostic capabilities of a highly multiplexed commercial assay to identify diverse SARS-CoV-2 lineages that circulated at over September 2, 2020 - March 2, 2022 among patients seeking care at our health systems. This assay demonstrates variant-specific signatures of nucleotide/amino acid polymorphisms and underscores its utility for detection of contemporary and emerging SARS-CoV-2 variants of concern.

4.
Mol Ecol ; 31(16): 4271-4285, 2022 08.
Article in English | MEDLINE | ID: mdl-35753053

ABSTRACT

Little is known about the evolution of cold tolerance in polar plant species and how they differ from temperate relatives. To gain insight into their biology and the evolution of cold tolerance, we compared the molecular basis of cold response in three Arctic Brassicaceae species. We conducted a comparative time series experiment to examine transcriptional responses to low temperature. RNA was sampled at 22°C, and after 3, 6, and 24 at 2°C. We then identified sets of genes that were differentially expressed in response to cold and compared them between species, as well as to published data from the temperate Arabidopsis thaliana. Most differentially expressed genes were species-specific, but a significant portion of the cold response was also shared among species. Among thousands of differentially expressed genes, ~200 were shared among the three Arctic species and A. thaliana, while ~100 were exclusively shared among the three Arctic species. Our results show that cold response differs markedly between Arctic Brassicaceae species, but probably builds on a conserved basis found across the family. They also confirm that highly polygenic traits such as cold tolerance may show little repeatability in their patterns of adaptation.


Subject(s)
Arabidopsis , Brassicaceae , Acclimatization/genetics , Arabidopsis/genetics , Brassicaceae/genetics , Cold Temperature , Gene Expression Regulation, Plant , Transcriptome/genetics
5.
Nat Commun ; 13(1): 3729, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35764640

ABSTRACT

The repeated, rapid and often pronounced patterns of evolutionary divergence observed in insular plants, or the 'plant island syndrome', include changes in leaf phenotypes, growth, as well as the acquisition of a perennial lifestyle. Here, we sequence and describe the genome of the critically endangered, Galápagos-endemic species Scalesia atractyloides Arnot., obtaining a chromosome-resolved, 3.2-Gbp assembly containing 43,093 candidate gene models. Using a combination of fossil transposable elements, k-mer spectra analyses and orthologue assignment, we identify the two ancestral genomes, and date their divergence and the polyploidization event, concluding that the ancestor of all extant Scalesia species was an allotetraploid. There are a comparable number of genes and transposable elements across the two subgenomes, and while their synteny has been mostly conserved, we find multiple inversions that may have facilitated adaptation. We identify clear signatures of selection across genes associated with vascular development, growth, adaptation to salinity and flowering time, thus finding compelling evidence for a genomic basis of the island syndrome in one of Darwin's giant daisies.


Subject(s)
DNA Transposable Elements , Genomics , Biological Evolution , DNA Transposable Elements/genetics , Synteny/genetics
6.
J Mol Diagn ; 24(7): 738-749, 2022 07.
Article in English | MEDLINE | ID: mdl-35525388

ABSTRACT

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to circulate, multiple variants of concern have emerged. New variants pose challenges for diagnostic platforms because sequence diversity can alter primer/probe-binding sites (PBSs), causing false-negative results. The MassARRAY SARS-CoV-2 Panel (Agena Bioscience) uses RT-PCR and mass spectrometry to detect five multiplex targets across N and ORF1ab genes. Herein, we use a data set of 256 SARS-CoV-2-positive specimens collected between April 11, 2021, and August 28, 2021, to evaluate target performance with paired sequencing data. During this time frame, two targets in the N gene (N2 and N3) were subject to the greatest sequence diversity. In specimens with N3 dropout, 69% harbored the Alpha-specific A28095U polymorphism that introduces a 3'-mismatch to the N3 forward PBS and increases risk of target dropout relative to specimens with 28095A (relative risk, 20.02; 95% CI, 11.36 to 35.72; P < 0.0001). Furthermore, among specimens with N2 dropout, 90% harbored the Delta-specific G28916U polymorphism that creates a 3'-mismatch to the N2 probe PBS and increases target dropout risk (relative risk, 11.92; 95% CI, 8.17 to 14.06; P < 0.0001). These findings highlight the robust capability of MassARRAY SARS-CoV-2 Panel target results to reveal circulating virus diversity, and they underscore the power of multitarget design to capture variants of concern.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , Humans , New York City/epidemiology , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
7.
Microbiol Spectr ; 10(2): e0148521, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35254140

ABSTRACT

We reported the frequency of resistance gene detection in Gram-negative blood culture isolates and correlated these findings with corresponding antibiograms. Data were obtained from 1045 isolates tested on the GenMark Dx ePlex Blood Culture Identification Gram-Negative Panels at the Mount Sinai Hospital Clinical Microbiology Laboratory in New York from March 2019 to February 2021. Susceptibilities were performed using Vitek 2 (bioMérieux Clinical Diagnostics) or Microscan (Beckman Coulter Inc.). blaCTX-M was detected in 26.4% Klebsiella pneumoniae, 23.5% Escherichia coli, and 16.4% Proteus mirabilis isolates. As would be expected, both blaCTX-M and blaCTX-M negative isolates were likely to be susceptible to newer agents while blaCTX-M positive isolates were more likely to be resistant to earlier generations of beta-lactam antibiotics. 3/204 blaCTX-M-positive isolates were found to be ceftriaxone-susceptible. Conversely, 2.8% ceftriaxone nonsusceptible strains were negative for all ß-lactamase genes on the ePlex BCID-GN panel, including blaCTX-M. The prevalence of CTX-M-producing Enterobacterales remains high in the United States. A small number of blaCTX-M-positive isolates were susceptible to ceftriaxone, and a small number of ceftriaxone nonsusceptible isolates were negative for blaCTX-M. Further studies are needed to determine the optimal management when an isolate is phenotypically susceptible to ceftriaxone, but blaCTX-M is detected. IMPORTANCE There is limited literature on corresponding results obtained from rapid molecular diagnostics with the antibiotic susceptibility profile. We reported a correlation between the results obtained from ePlex and the antibiograms against a large collection of Gram-negative bacteria. We reported that there can be a discrepancy in a small number of cases, but the clinical significance of that is unknown.


Subject(s)
Anti-Infective Agents , Ceftriaxone , Anti-Bacterial Agents/pharmacology , Data Analysis , Escherichia coli , Gram-Negative Bacteria/genetics , Microbial Sensitivity Tests , beta-Lactam Resistance , beta-Lactamases/genetics
8.
J Med Virol ; 94(4): 1606-1616, 2022 04.
Article in English | MEDLINE | ID: mdl-34877674

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has sparked the rapid development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostics. However, emerging variants pose the risk for target dropout and false-negative results secondary to primer/probe binding site (PBS) mismatches. The Agena MassARRAY® SARS-CoV-2 Panel combines reverse-transcription polymerase chain reaction and matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry to probe for five targets across N and ORF1ab genes, which provides a robust platform to accommodate PBS mismatches in divergent viruses. Herein, we utilize a deidentified data set of 1262 SARS-CoV-2-positive specimens from Mount Sinai Health System (New York City) from December 2020 to April 2021 to evaluate target results and corresponding sequencing data. Overall, the level of PBS mismatches was greater in specimens with target dropout. Of specimens with N3 target dropout, 57% harbored an A28095T substitution that is highly specific for the Alpha (B.1.1.7) variant of concern. These data highlight the benefit of redundancy in target design and the potential for target performance to illuminate the dynamics of circulating SARS-CoV-2 variants.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , COVID-19/epidemiology , COVID-19/virology , Coronavirus Nucleocapsid Proteins/genetics , Genetic Variation , Genome, Viral/genetics , Humans , New York City/epidemiology , Phosphoproteins/genetics , Polyproteins/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics , Viral Proteins/genetics
9.
IDCases ; 25: e01231, 2021.
Article in English | MEDLINE | ID: mdl-34377666

ABSTRACT

Capnocytophaga sputigena is a facultatively-anaerobic bacterium that is part of the human oropharyngeal microflora. Although C. sputigena bacteremia is uncommon, systemic infections have been reported in both immunocompetent and immunocompromised patients. We report a case of catheter-related bloodstream infection by C. sputigena and highlight its enhanced biofilm-forming capacity in vitro.

10.
Nat Commun ; 12(1): 3463, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103497

ABSTRACT

Numerous reports document the spread of SARS-CoV-2, but there is limited information on its introduction before the identification of a local case. This may lead to incorrect assumptions when modeling viral origins and transmission. Here, we utilize a sample pooling strategy to screen for previously undetected SARS-CoV-2 in de-identified, respiratory pathogen-negative nasopharyngeal specimens from 3,040 patients across the Mount Sinai Health System in New York. The patients had been previously evaluated for respiratory symptoms or influenza-like illness during the first 10 weeks of 2020. We identify SARS-CoV-2 RNA from specimens collected as early as 25 January 2020, and complete SARS-CoV-2 genome sequences from multiple pools of samples collected between late February and early March, documenting an increase prior to the later surge. Our results provide evidence of sporadic SARS-CoV-2 infections a full month before both the first officially documented case and emergence of New York as a COVID-19 epicenter in March 2020.


Subject(s)
COVID-19/epidemiology , Pandemics , SARS-CoV-2/physiology , Humans , Nasopharynx/virology , New York/epidemiology , Phylogeny , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
11.
IDCases ; 25: e01173, 2021.
Article in English | MEDLINE | ID: mdl-34141583

ABSTRACT

We describe a case of Lemierre's syndrome (LS) caused by a hypervirulent strain of Klebsiella pneumoniae in a 63-year-old female with hypertension, hyperlipidemia, and diabetes mellitus, who presented with right neck pain and fevers. Computerized tomography of the neck and chest revealed an occluded right internal jugular vein secondary to thrombosis and septic emboli in lungs. Blood cultures grew K. pneumoniae. The patient was treated with ampicillin-sulbactam and then transitioned to amoxicillin-clavulanate to complete a 6-week course of antibiotics, and a 3-month course of rivaroxaban. String test of the K. pneumoniae isolate was positive at 2 cm. Whole genome sequencing identified several genes associated with the hypervirulent strain, notably the genes encoding for aerobactin (iucA and iucB) and salmochelin (iroB) iron acquisition systems. LS can rarely be caused by K. pneumoniae. Clinicians should monitor for known complications, such as septic emboli in patients with LS.

12.
Med Mycol Case Rep ; 32: 73-76, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33996426

ABSTRACT

Keratomycosis or mycotic keratitis is recognized as one of the major causes of ophthalmic morbidity worldwide. The most common organisms linked to keratomycosis include Candida spp., Fusarium spp., and Aspergillus spp. However, varieties of saprobic fungi have been reported as causative agents of keratomycosis. Amongst these are members of the genus Colletotrichum. Herein we present the first reported case of C. chlorophyti infection in a post-corneal transplant patient, suggesting an increasing role for Colletotrichum species as emerging human pathogens, particularly in the transplant population.

13.
J Med Virol ; 93(9): 5481-5486, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33963565

ABSTRACT

As severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections continue, there is a substantial need for cost-effective and large-scale testing that utilizes specimens that can be readily collected from both symptomatic and asymptomatic individuals in various community settings. Although multiple diagnostic methods utilize nasopharyngeal specimens, saliva specimens represent an attractive alternative as they can rapidly and safely be collected from different populations. While saliva has been described as an acceptable clinical matrix for the detection of SARS-CoV-2, evaluations of analytic performance across platforms for this specimen type are limited. Here, we used a novel sensitive RT-PCR/MALDI-TOF mass spectrometry-based assay (Agena MassARRAY®) to detect SARS-CoV-2 in saliva specimens. The platform demonstrated high diagnostic sensitivity and specificity when compared to matched patient upper respiratory specimens. We also evaluated the analytical sensitivity of the platform and determined the limit of detection of the assay to be 1562.5 copies/ml. Furthermore, across the five individual target components of this assay, there was a range in analytic sensitivities for each target with the N2 target being the most sensitive. Overall, this system also demonstrated comparable performance when compared to the detection of SARS-CoV-2 RNA in saliva by the cobas® 6800/8800 SARS-CoV-2 real-time RT-PCR Test (Roche). Together, we demonstrate that saliva represents an appropriate matrix for SARS-CoV-2 detection on the novel Agena system as well as on a conventional real-time RT-PCR assay. We conclude that the MassARRAY® system is a sensitive and reliable platform for SARS-CoV-2 detection in saliva, offering scalable throughput in a large variety of clinical laboratory settings.


Subject(s)
COVID-19 Nucleic Acid Testing/standards , COVID-19/diagnosis , Diagnostic Tests, Routine/standards , RNA, Viral/genetics , SARS-CoV-2/genetics , Saliva/virology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/standards , Benchmarking , COVID-19/virology , COVID-19 Nucleic Acid Testing/instrumentation , COVID-19 Nucleic Acid Testing/methods , Diagnostic Tests, Routine/instrumentation , Diagnostic Tests, Routine/methods , Humans , Limit of Detection , Nasopharynx/virology , Specimen Handling/standards , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
14.
PeerJ ; 9: e10896, 2021.
Article in English | MEDLINE | ID: mdl-33614296

ABSTRACT

Morphologically similar species, that is cryptic species, may be similar or quasi-similar owing to the deceleration of morphological evolution and stasis. While the factors underlying the deceleration of morphological evolution or stasis in cryptic species remain unknown, decades of research in the field of paleontology on punctuated equilibrium have originated clear hypotheses. Species are expected to remain morphologically identical in scenarios of shared genetic variation, such as hybridization and incomplete lineage sorting, or in scenarios where bottlenecks reduce genetic variation and constrain the evolution of morphology. Here, focusing on three morphologically similar Stygocapitella species, we employ a whole-genome amplification method (WGA) coupled with double-digestion restriction-site associated DNA sequencing (ddRAD) to reconstruct the evolutionary history of the species complex. We explore population structure, use population-level statistics to determine the degree of connectivity between populations and species, and determine the most likely demographic scenarios which generally reject for recent hybridization. We find that the combination of WGA and ddRAD allowed us to obtain genomic-level data from microscopic eukaryotes (∼1 millimetre) opening up opportunities for those working with population genomics and phylogenomics in such taxa. The three species share genetic variance, likely from incomplete lineage sorting and ancient admixture. We speculate that the degree of shared variation might underlie morphological similarity in the Atlantic species complex.

15.
Mol Ecol Resour ; 21(3): 661-676, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33058468

ABSTRACT

The Arctic is one of the most extreme terrestrial environments on the planet. Here, we present the first chromosome-scale genome assembly of a plant adapted to the high Arctic, Draba nivalis (Brassicaceae), an attractive model species for studying plant adaptation to the stresses imposed by this harsh environment. We used an iterative scaffolding strategy with data from short-reads, single-molecule long reads, proximity ligation data, and a genetic map to produce a 302 Mb assembly that is highly contiguous with 91.6% assembled into eight chromosomes (the base chromosome number). To identify candidate genes and gene families that may have facilitated adaptation to Arctic environmental stresses, we performed comparative genomic analyses with nine non-Arctic Brassicaceae species. We show that the D. nivalis genome contains expanded suites of genes associated with drought and cold stress (e.g., related to the maintenance of oxidation-reduction homeostasis, meiosis, and signaling pathways). The expansions of gene families associated with these functions appear to be driven in part by the activity of transposable elements. Tests of positive selection identify suites of candidate genes associated with meiosis and photoperiodism, as well as cold, drought, and oxidative stress responses. Our results reveal a multifaceted landscape of stress adaptation in the D. nivalis genome, offering avenues for the continued development of this species as an Arctic model plant.


Subject(s)
Adaptation, Physiological , Brassicaceae , Genome, Plant , Arctic Regions , Brassicaceae/genetics , Genomics
16.
New Phytol ; 229(3): 1795-1809, 2021 02.
Article in English | MEDLINE | ID: mdl-32761901

ABSTRACT

The complex nature of species boundaries has been a central topic in evolutionary biology ever since Darwin. Despite numerous separate studies on reproductive isolation and hybridization, their relationship remains underinvestigated. Are the strengths and asymmetries of reproductive barriers reflected in the extent and directionalities of interspecific genetic exchange? We combined field, experimental, and molecular data to quantify strengths and asymmetries of sympatric reproductive barriers and hybridization between florally heteromorphic primroses. We also assessed whether generalist pollinators discriminate between different floral cues and contribute to reproductive isolation, a long-debated topic. Sympatric reproductive isolation is high but incomplete, and most phenotypic intermediates are genetic F1 hybrids, whereas backcrosses are rare, revealing low interspecific gene flow. Species integrity rests on multiple barriers, but ethological isolation is among the strongest, demonstrating that even generalist pollinators crucially contribute to the maintenance of species boundaries. Furthermore, reproductive barriers are weaker for Primula veris and short-styled plants, results corroborated by molecular data. Thus, in florally heteromorphic systems, both species- and morph-dependent asymmetries affect permeability of species boundaries. Our study illustrates how the interactions between complex floral syndromes and pollinators shape species boundaries in unique, previously undescribed ways.


Subject(s)
Primula , Reproductive Isolation , Biological Evolution , Flowers/genetics , Hybridization, Genetic , Pollination , Sympatry
17.
Nature ; 590(7844): 146-150, 2021 02.
Article in English | MEDLINE | ID: mdl-33142304

ABSTRACT

In late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first detected in China and has since caused a pandemic of coronavirus disease 2019 (COVID-19). The first case of COVID-19 in New York City was officially confirmed on 1 March 2020 followed by a severe local epidemic1. Here, to understand seroprevalence dynamics, we conduct a retrospective, repeated cross-sectional analysis of anti-SARS-CoV-2 spike antibodies in weekly intervals from the beginning of February to July 2020 using more than 10,000 plasma samples from patients at Mount Sinai Hospital in New York City. We describe the dynamics of seroprevalence in an 'urgent care' group, which is enriched in cases of COVID-19 during the epidemic, and a 'routine care' group, which more closely represents the general population. Seroprevalence increased at different rates in both groups; seropositive samples were found as early as mid-February, and levelled out at slightly above 20% in both groups after the epidemic wave subsided by the end of May. From May to July, seroprevalence remained stable, suggesting lasting antibody levels in the population. Our data suggest that SARS-CoV-2 was introduced in New York City earlier than previously documented and describe the dynamics of seroconversion over the full course of the first wave of the pandemic in a major metropolitan area.


Subject(s)
Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19 Serological Testing/statistics & numerical data , COVID-19/epidemiology , COVID-19/immunology , Epidemiological Monitoring , SARS-CoV-2/immunology , Adolescent , Adult , Ambulatory Care/statistics & numerical data , COVID-19/diagnosis , COVID-19/virology , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Incidence , Infant , Infant, Newborn , Male , Middle Aged , New York City/epidemiology , Spike Glycoprotein, Coronavirus/immunology , Time Factors , Urban Population/statistics & numerical data , Young Adult
19.
J Med Virol ; 92(9): 1695-1698, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32383179

ABSTRACT

The urgent need to implement and rapidly expand testing for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection has led to the development of multiple assays. How these tests perform relative to one another is poorly understood. We evaluated the concordance between the Roche Diagnostics cobas 6800 SARS-CoV-2 test and a laboratory-developed test (LDT) real-time reverse transcription-polymerase chain reaction based on a modified Centers for Disease Control and Prevention protocol, for the detection of SARS-CoV-2 in samples submitted to the Clinical Laboratories of the Mount Sinai Health System. A total of 1006 nasopharyngeal swabs in universal transport medium from persons under investigation were tested for SARS-CoV-2 as part of routine clinical care using the cobas SARS-CoV-2 test with subsequent evaluation by the LDT. Cycle threshold values were analyzed and interpreted as either positive ("detected" or "presumptive positive"), negative (not detected), inconclusive, or invalid. Statistical analysis was performed using GraphPad Prism 8. The cobas SARS-CoV-2 test reported 706 positive and 300 negative results. The LDT reported 640 positive, 323 negative, 34 inconclusive, and 9 invalid results. When excluding inconclusive and invalid results, the overall percent agreement between the two platforms was 95.8%. Cohen's κ coefficient was 0.904 (95% confidence interval, 0.875-0.933), suggesting almost perfect agreement between both platforms. An overall discordance rate of 4.2% between the two systems may reflect differences in primer sequences, assay limit of detection, or other factors, highlighting the importance of comparing the performance of different testing platforms.


Subject(s)
COVID-19/diagnosis , COVID-19/virology , Nasopharynx/virology , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/classification , SARS-CoV-2/genetics , Humans , RNA, Viral , Reagent Kits, Diagnostic , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction/instrumentation , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/isolation & purification , Sensitivity and Specificity
20.
Viruses ; 12(3)2020 03 22.
Article in English | MEDLINE | ID: mdl-32235715

ABSTRACT

BACKGROUND: Human papillomaviruses (HPVs) have been linked to a variety of human cancers. As the landscape of HPV-related neoplasia continues to expand, uncommon and rare HPV genotypes have also started to emerge. Host-virus interplay is recognized as a key driver in HPV carcinogenesis, with host immune status, virus genetic variants and coinfection highly influencing the dynamics of malignant transformation. Immunosuppression and tissue tropism are also known to influence HPV pathogenesis. METHODS: Herein, we present a case of a patient who, in the setting of HIV positivity, developed anal squamous cell carcinoma associated with HPV69 and later developed squamous cell carcinoma in the lungs, clinically presumed to be metastatic disease, associated with HPV73. Consensus PCR screening for HPV was performed by real-time PCR amplification of the L1 gene region, amplification of the E6 regions with High-Resolution Melting Curve Analysis followed by Sanger sequencing confirmation and phylogenetic analysis. RESULTS: Sanger sequencing of the consensus PCR amplification product determined that the anal tissue sample was positive for HPV 69, and the lung tissue sample was positive for HPV 73. CONCLUSIONS: This case underscores the importance of recognizing the emerging role of these rare "possibly carcinogenic" HPV types in human carcinogenesis.


Subject(s)
Alphapapillomavirus/physiology , Anus Neoplasms/diagnosis , Anus Neoplasms/etiology , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/etiology , Lung Neoplasms/diagnosis , Lung Neoplasms/secondary , Papillomavirus Infections/virology , Adult , Alphapapillomavirus/classification , Biopsy , DNA, Viral/genetics , Genotype , Humans , Male , Phylogeny , Polymerase Chain Reaction , Radiography, Thoracic , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...